资源描述
一、解答题
1.如图,已知,,且满足.
(1)求、两点的坐标;
(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;
(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.
2.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.
(1)若时,则___________;
(2)试求出的度数(用含的代数式表示);
(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)
3.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
4.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
5.如图①,将一张长方形纸片沿对折,使落在的位置;
(1)若的度数为,试求的度数(用含的代数式表示);
(2)如图②,再将纸片沿对折,使得落在的位置.
①若,的度数为,试求的度数(用含的代数式表示);
②若,的度数比的度数大,试计算的度数.
6.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.
7.阅读材料:求1+2+22+23+24+…+22017的值.
解:设S=1+2+22+23+24+…+22017,
将等式两边同时乘以2得:
2S=2+22+23+24+…+22017+22018
将下式减去上式得2S-S=22018-1即S=22018-1
即1+2+22+23+24+…+22017=22018-1
请你仿照此法计算:
(1)1+2+22+23+…+29=_____;
(2)1+5+52+53+54+…+5n(其中n为正整数);
(3)1+2×2+3×22+4×23+…+9×28+10×29.
8.(阅读材料)
数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.
你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:
第一步:∵,,,
∴.
∴能确定59319的立方根是个两位数.
第二步:∵59319的个位数是9,
∴能确定59319的立方根的个位数是9.
第三步:如果划去59319后面的三位319得到数59,
而,则,可得,
由此能确定59319的立方根的十位数是3,因此59319的立方根是39.
(解答问题)
根据上面材料,解答下面的问题
(1)求110592的立方根,写出步骤.
(2)填空:__________.
9.我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:.
例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.
(1)F(13)= ,F(24)= ;
(2)如果一个两位正整数t,其个位数字是a,十位数字为,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;
(3)在(2)所得“和谐数”中,求F(t)的最大值.
10.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则.
例如:,.
(1)计算: ; ;
(2)①求满足的实数的取值范围,
②求满足的所有非负实数的值;
(3)若关于的方程有正整数解,求非负实数的取值范围.
11.规定:求若千个相同的有理数(均不等于)的除法运算叫做除方,如等,类比有理数的乘方,我们把记作,读作“的圈次方”,记作,读作“的圈次方”,一般地,把记作,读作“”的圈次方.
(初步探究)(1)直接写出计算结果: ; ;
(2)关于除方,下列说法错误的是( )
A.任何非零数的圈次方都等于 B.对于任何正整数
C. D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数
(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(3)试一试:,依照前面的算式,将,的运算结果直接写成幂的形式是 , ;
(4)想一想:将一个非零有理数的圆次方写成幂的形式是: ;
(5)算一算:.
12.若一个四位数t的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t与它的“中介数”的差为P(t).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P(5536)=5536﹣6553=-1017.
(1)P(2215)= ,P(6655)= .
(2)求证:任意一个“前介数”t,P(t)一定能被9整除.
(3)若一个千位数字为2的“前介数”t能被6整除,它的“中介数”能被2整除,请求出满足条件的P(t)的最大值.
13.如图,在平面直角坐标系中,已知,,,,满足.平移线段得到线段,使点与点对应,点与点对应,连接,.
(1)求,的值,并直接写出点的坐标;
(2)点在射线(不与点,重合)上,连接,.
①若三角形的面积是三角形的面积的2倍,求点的坐标;
②设,,.求,,满足的关系式.
14.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.
(1)当时,的度数是_______;
(2)当,求的度数(用的代数式表示);
(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.
(4)当点运动到使时,请直接写出的度数.
15.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,
(1)求a,b的值;
(2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3,
①求:∠CAB+∠ODB的度数;
②求:∠AED的度数.
16.已知关于x、y的二元一次方程
(1)若方程组的解x、y满足,求a的取值范围;
(2)求代数式的值.
17.在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为.
(1)①当点与点重合时,的值为______;②当点与点重合时,的值为______.
(2)请用含的式子表示,并直接写出的取值范围.
18.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.
(1)( ),( )
(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数: (注: 三角形三个内角的和为)
(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.
19.如图,学校印刷厂与A,D两地有公路、铁路相连,从A地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D地批发,已知公路运价1.5元/(t•km),铁路运价1.2元/(t•km).这两次运输支出公路运费4200元,铁路运费26280元.
(1)白纸和作业本各多少吨?
(2)这批作业本的销售款比白纸的购进款与运输费的和多多少元?
20.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:
月份
用水量(m3)
收费(元)
3
5
7.5
4
9
27
(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;
(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.
21.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.
(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.
(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.
(3)若AM=BN,MN=BM,求m和n值.
22.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”.
(1)请判断7441和5436是否为“诚勤数”并说明理由;
(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.
23.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.
(1)已知T(1,﹣1)=﹣2,T(4,2)=3.
①求a,b的值;
②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?
24.如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动.若两点同时出发,其中一点到达终点时,运动停止.
(Ⅰ)直接写出三个点的坐标;
(Ⅱ)设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;
(Ⅲ)当三角形的面积的范围小于16时,求运动的时间的范围.
25.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3).
(1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为 ;
(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ;
(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ;
(4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围.
26.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”.
将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为.
例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以.
根据以上定义,解答下列问题:
(1)填空:①下列两位数:20,21,22中,“互异数”为________;
②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字)
(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c;
(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________;
(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________.
27.如图所示,在平面直角坐标系中,点A,,的坐标为,,,其中,,满足,.
(1)求,,的值;
(2)若在轴上,且,求点坐标;
(3)如果在第二象限内有一点,在什么取值范围时,的面积不大于的面积?求出在符合条件下,面积最大值时点的坐标.
28.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.
(1)求点C的坐标.
(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).
(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.
29.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.
(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?
(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.
①请帮柑橘园设计租车方案;
②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.
30.阅读以下内容:
已知有理数m,n满足m+n=3,且求k的值.
三位同学分别提出了以下三种不同的解题思路:
甲同学:先解关于m,n的方程组,再求k的值;
乙同学:将原方程组中的两个方程相加,再求k的值;
丙同学:先解方程组,再求k的值.
(1)试选择其中一名同学的思路,解答此题;
(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1),; (2);(3)
【解析】
【分析】
(1)利用非负数的性质即可解决问题;
(2)利用三角形面积求法,由列方程组,求出点C坐标,进而由△ACD面积求出D点坐标.
(3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标.
【详解】
解:(1) ,
∴,
,,
,,
,,
(2)由
∴,
,
,
如图1,连,作轴,轴,
,
即
,
,
,
而,
,
,
,
(3)如图2:
∵EF∥AB,
∴,
∴,即,
,
,
,
,
,
,
,
,
,
,
,
,
,
【点睛】
本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.
2.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解即可;
(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.
【详解】
解:(1)当n=20时,∠ABC=40°,
过E作EF∥AB,则EF∥CD,
∴∠BEF=∠ABE,∠DEF=∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=60°;
(2)同(1)可知:
∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;
当点B在点A右侧时,
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.
3.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
4.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠ MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
5.(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;
②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解.
【详解】
解:(1)如图,由题意可知,
∴,
∵,
∴,
,
由折叠可知.
(2)①由题(1)可知 ,
∵,
,
再由折叠可知:
,
;
②由可知:,
由(1)知,
,
又的度数比的度数大,
,
,
,
.
【点睛】
此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.
6.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.
【详解】
解:(1)过作,
,
,
,,
,
故答案为:;
(2).
理由如下:
过作,
,
,
,,
,,
;
(3),
设,则,
,,
又,,
,
平分,
,
,
,
即,解得,
,
.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
7.(1)210-1;(2);(3)9×210+1.
【分析】
(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;
(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n的值.
(3)根据题目中的信息,运用类比的数学思想可以解答本题.
【详解】
解:(1)设S=1+2+22+23+…+29,
将等式两边同时乘以2得:
2S=2+22+23+24+…+29+210,
将下式减去上式得2S-S=210-1,即S=210-1,
即1+2+22+23+…+29=210-1.
故答案为210-1;
(2)设S=1+5+52+53+54+…+5n,
将等式两边同时乘以5得:
5S=5+52+53+54+55+…+5n+5n+1,
将下式减去上式得5S-S=5n+1-1,即S=,
即1+5+52+53+54+…+5n=;
(3)设S=1+2×2+3×22+4×23+…+9×28+10×29,
将等式两边同时乘以2得:
2S=2+2×22+3×23+4×24+…+9×29+10×210,
将上式减去下式得-S=1+2+22+23+…+29+10×210,
-S=210-1-10×210,
S=9×210+1,
即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.
【点睛】
本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.
8.(1)48;(2)28
【分析】
(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.
(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.
【详解】
解:(1)第一步:,,,
,
能确定110592的立方根是个两位数.
第二步:的个位数是2,,
能确定110592的立方根的个位数是8.
第三步:如果划去110592后面的三位592得到数110,
而,则,可得,
由此能确定110592的立方根的十位数是4,因此110592的立方根是48;
(2)第一步:,,,
,
能确定21952的立方根是个两位数.
第二步:的个位数是2,,
能确定21952的立方根的个位数是8.
第三步:如果划去21952后面的三位952得到数21,
而,则,可得,
由此能确定21952的立方根的十位数是2,因此21952的立方根是28.
即,
故答案为:28.
【点睛】
本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.
9.(1),(2)所以和谐数为15,26,37,48,59;(3)F(t)的最大值是.
【分析】
(1)根据题意,按照新定义的法则计算即可.
(2)根据新定义的”和谐数”定义,将数用a,b表示列出式子解出即可.
(3)根据(2)中计算的结果求出最大即可.
【详解】
解:(1)F(13)=,F(24)=;
(2)原两位数可表示为
新两位数可表示为
∴
∴
∴
∴
∴ (且b为正整数 )
∴b=2,a=5; b=3,a=6, b=4,a=7,
b=5,a=8 b=6,a=9
所以和谐数为15,26,37,48,59
(3)所有“和谐数”中,F(t)的最大值是.
【点睛】
本题为新定义的题型,关键在于读懂题意,按照规定解题.
10.(1)2,3 (2)①② (3)
【分析】
(1)根据新定义的运算规则进行计算即可;
(2)①根据新定义的运算规则即可求出实数的取值范围;②根据新定义的运算规则和为整数,即可求出所有非负实数的值;
(3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围.
【详解】
(1)2;3;
(2)①∵
∴
解得;
②∵
∴
解得
∵为整数
∴
故所有非负实数的值有;
(3)
∵方程的解为正整数
∴或2
①当时,是方程的增根,舍去
②当时,.
【点睛】
本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.
11.(1),;(2)C;(3),;(4);(5)-5.
【分析】
概念学习:(1)分别按公式进行计算即可;
(2)根据定义依次判定即可;
深入思考:
(3)由幂的乘方和除方的定义进行变形,即可得到答案;
(4)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,结果第一个数不变为a,第二个数及后面的数变为,则;
(5)将第二问的规律代入计算,注意运算顺序.
【详解】
解:(1);
;
故答案为:,;
(2)A、任何非零数的圈2次方都等于1;所以选项A正确;
B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1; 所以选项B正确;
C、,,
则;故选项C错误;
D、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,故D正确;
故选:;
(3)根据题意,
,
由上述可知:;
(4)根据题意,
由(3)可知,;
故答案为:
(5)
.
【点睛】
本题考查了有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.
12.(1)-3006,990;(2)见解析;(3)P(t)的最大值是P(2262)=36.
【分析】
(1)根据“前介数”t与它的“中介数”的差为P(t)的定义求解即可;
(2)设“前介数”为且a、b、c均不为0的整数,即1a、b、c,根据定义得到P(t)=,则P(t)一定能被9整除;
(3)设“前介数”为,根据题意得到能被3整除,且b只能取2,4,6,8中的其中一个数;对应的“中介数”是,得到a只能取2,4,6,8中的其中一个数,计算P(t),推出要求P(t)的最大值,即要尽量的大,要尽量的小,再分类讨论即可求解.
【详解】
(1)解:2215是“前介数”,其对应的“中介数”是5221,
∴P(2215)=2215-5221=-3006;
6655是“前介数”,其对应的“中介数”是5665,
∴P(6655)=6655-5665=990;
故答案为:-3006,990;
(2)证明:设“前介数”为且a、b、c均为不为0的整数,即1a、b、c,
∴,
又对应的“中介数”是,
∴P(t)=
,
∵a、b、c均不为0的整数,
∴为整数,
∴P(t)一定能被9整除;
(3)证明:设“前介数”为且即1a、b,a、b均为不为0的整数,
∴,
∵能被6整除,
∴能被2整除,也能被3整除,
∴为偶数,且能被3整除,
又1,
∴b只能取2,4,6,8中的其中一个数,
又对应的“中介数”是,
且该“中介数”能被2整除,
∴为偶数,
又1,
∴a只能取2,4,6,8中的其中一个数,
∴P(t)=
,
要求P(t)的最大值,即要尽量的大,要尽量的小,
①的最大值为8,的最小值为2,但此时,
且14不能被3整除,不符合题意,舍去;
②的最大值为6,的最小值仍为2,但此时,能被3整除,
且P(t)=2262-2226=36;
③的最大值仍为8,的最小值为4,但此时,
且16不能被3整除,不符合题意,舍去;
其他情况,减少,增大,则P(t)减少,
∴满足条件的P(t)的最大值是P(2262)=36.
【点睛】
本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法.
13.(1);(2)①或;②点在B点左侧时,;点在B点右侧时,.
【分析】
(1)根据非负数的性质分别求出、,根据平移规律得到平移方式,再由平移的坐标变化规律求出点的坐标;
(2)①设,根据三角形的面积公式列出方程,解方程求出,得到点P的坐标;
②分点点在B点左侧、点在B点右侧时,过点P作,根据平行线的性质解答.
【详解】
解:(1),
,,
,解得,,.
,,
平移线段得到线段,使点与点对应,
∴平移线段向上平移4个单位,再向右平移2个单位得到线段,
∴,即;
(2)①设,
∵线段平移得到线段,
∴,
∵,
∵,
∴,
∵,
∴
解得,
当P在B点左侧时,坐标为(1,0),
当P在B点右侧时,坐标为(7,0),
或;
②I、点在射线(不与点,重合)上,点在B点左侧时,,,满足的关系式是.
理由如下:如图1,过点作,
,
∴,
由平移得到,点与点对应,点与点对应,
,
∴
∴,
;即,
II、如图2,点在射线(不与点,重合)上,点在B点右侧时,,,满足的关系式是.
同①的方法得,,,
;即:
综上所述:点在B点左侧时,.点在B点右侧时,.
【点睛】
本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式.关键是理解平移规律,作平行线将相关角进行转化.
14.(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;
(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;
(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.
【详解】
解:(1)∵AM∥BN,∠A=60°,
∴∠A+∠ABN=180°,
∴∠ABN=120°;
(2)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-x°,
∴∠ABP+∠PBN=180°-x°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=180°-x°,
∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;
(3)不变,∠ADB:∠APB=.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠D
展开阅读全文