1、成都七中实验学校七年级数学下册期末压轴难题测试卷及答案一、选择题1如图,下列说法不正确的是( )A1与3是对顶角B2与6是同位角C3与4是内错角D3与5是同旁内角2下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是()ABCD3已知点在轴的负半轴上,则点在( )A第一象限B第二象限C第三象限D第四象限4下列说法中,错误的个数为( )两条不相交的直线叫做平行线;过一点有且只有一条直线与已知直线平行;在同一平面内不平行的两条线段一定相交;两条直线与第三条直线相交,那么这两条直线也相交A1个B2个C3个D4个5如图,已知,平分,平分,则下列判断:;平分;中,正确的有( )A1个B2个C3
2、个D4个6下列运算正确的是()A=6BC=2D23=57如图,和相交于点O,则下列结论正确的是( )ABCD8在平面直角坐标系中,对于点P(x,y),我们把点P(y1,x1)叫做点P的友好点,已知点A1的友好点为点A2,点A2的友好点为点A3,点A3的友好点为点A4,以此类推,当点A1的坐标为(2,1)时,点A2021的坐为()A(2,1)B(0,3)C(4,1)D(2,3)二、填空题925的算术平方根是 _.10在平面直角坐标系中,若点和点关于轴对称,则_11如图,AD、AE分别是ABC的角平分线和高,B50,C70,则DAE_12已知ab,某学生将一直角三角板如图所示放置,如果130,那么
3、2的度数为_13如图,将长方形纸片沿折叠,交于点E,得到图1,再将纸片沿折叠得到图2,若,则图2中的为_14“”定义新运算:对于任意的有理数a和b,都有例如:当m为有理数时,则等于_15,则在第_象限16在平面直角坐标系中,按照此规律排列下去,点的坐标为_三、解答题17(1)计算:(2)解方程:18求下列各式中x的值:(1)(2)19完成下面的证明与解题如图,ADBC,点E是BA延长线上一点,EDCE(1)求证:BD证明:ADBC,B_(_)EDCE,ABCD(_)D_(_)BD(2)若CE平分BCD,E50,求B的度数20如图,在平面直角坐标系中,三角形OBC的顶点都在网格格点上,一个格是一
4、个单位长度(1)将三角形OBC先向下平移3个单位长度,再向左平移2个单位长度(点与点C是对应点),得到三角形,在图中画出三角形;(2)直接写出三角形的面积为_21阅读下面的文字,解答问题:是一个无理数,而无理数是无限不循环小数,因此的小数部分无法全部写出来,但是我们可以想办法把它表示出来因为即,所以的整数部分为,将减去其整数部分后,得到的差就是小数部分,于是的小数部分为(1)求出的整数部分和小数部分;(2)求出的整数部分和小数部分;(3)如果的整数部分是,小数部分是,求出的值二十二、解答题22小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)
5、请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的
6、度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?24将两块三角板按如图置,其中三角板边,(1)下列结论:正确的是_如果,则有;如果,则平分(2)如果,判断与是否相等,请说明理由(3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数25如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动(1)若BAO和ABO的平分线相交于点Q,在点A,B的运动过程中,AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,
7、请说明理由(2)若AP是BAO的邻补角的平分线,BP是ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,P和C的大小是否会发生变化?若不发生变化,请求出P和C的度数;若发生变化,请说明理由26如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值【参考答案】一、选择题1B解析:B【分析】根据对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶
8、点,那么这两个角是对顶角;内错角定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同位角定义:两条直线被第三条直线所截,两个角分别在两条被截线同一方,并且都在截线的同侧,具有这样位置关系的一对角叫做同位角;同旁内角定义:两条直线被第三条直线所截,若两个角都在两直线之间,并且在截线的同侧,则这样的一对角叫做同旁内角;进行分析判断即可【详解】解答:解:A、1与3是对顶角,故原题说法正确,不符合题意;B、2与6不是同位角,故原题说法错误,符合题意;C、3与4是内错角,故原题说法正确,不符合题意;D、3与5是同旁内角,故原题说法正确,不
9、符合题意;故选:B【点睛】此题主要考查了对顶角、内错角、同位角、同旁内角,关键是掌握这几种角的定义2B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正解析:B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误故选:B
10、【点睛】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键3A【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答【详解】点P(0,a)在y轴的负半轴上,点M(-a,-a+5)在第一象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键4D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案【详解】在同一平面内,两条不相交的直线叫做平行线,故本小题错误,过直线外一点有且只有一条直线与已知直线平行,故本小题错误,在同一平面内不平行的两条直线一定相交;故本小题错误,两条直线与第三
11、条直线相交,那么这两条直线不一定相交,故本小题错误综上所述:错误的个数为4个故选D【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键5B【分析】根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可【详解】,正确;,平分,平分,根据已知不能推出,错误;错误;,正确;即正确的有个,故选:【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键6B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得【详解】A、,此选项计算错误;B、,此
12、选项计算正确;C、,此选项计算错误;D、23=6,此选项计算错误;故选:B【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键7A【分析】根据对顶角的性质和平行线的性质判断即可【详解】解:A、和是对顶角,选项正确,符合题意;B、与OB相交于点A,与OB不平行,选项错误,不符合题意;C、AO与BC相交于点B,AO与BC不平行,选项错误,不符合题意;D、OD与BC相交于点C,OD与BC不平行,,选项错误,不符合题意故选:A【点睛】此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质对顶角相等8A【分析】根据友好点的定
13、义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数)2021=5054+1,点A2021的坐标为(2,1)故选:A【点睛】本题考查了规律型的点的坐标,从已
14、知条件得出循环规律:每4个点为一个循环是解题的关键二、填空题95【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根52=25, 25的算术平方根是5考点:算术平方根解析:5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根52=25, 25的算术平方根是5考点:算术平方根10【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故解析:【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点
15、M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故答案为:【点睛】本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键1110【分析】根据三角形内角和定理求出BAC,再根据角平分线的定义求出BAD,根据直角三角形两锐角互余求出BAE,然后求解即可【详解】解:B=50,C=70,BAC=1解析:10【分析】根据三角形内角和定理求出BAC,再根据角平分线的定义求出BAD,根据直角三角形两锐角互余求出BAE,然后求解即可【详解】解:B=50,C=70,BAC=180-B-C=180-50-70=60,AD是角平分线,BAD=BAC=60=
16、30,AE是高,BAE=90-B=90-50=40,DAE=BAE-BAD=40-30=10故答案为:10【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键1260【分析】如图,由对顶角相等可得3,由平行线的性质可得4,由三角形的内角和定理可得5,再根据对顶角相等即得2【详解】解:如图,1=30,3=1=30,ab解析:60【分析】如图,由对顶角相等可得3,由平行线的性质可得4,由三角形的内角和定理可得5,再根据对顶角相等即得2【详解】解:如图,1=30,3=1=30,ab,4=3=30,5=180490=60,2=5
17、=60故答案为:60【点睛】本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键13126【分析】在图1中,求出BCE,根据折叠的性质和外角的性质得到EDG,在图2中结合折叠的性质,利用CDG=EDG-CDE可得结果【详解】解:在图1中,AEC=36,解析:126【分析】在图1中,求出BCE,根据折叠的性质和外角的性质得到EDG,在图2中结合折叠的性质,利用CDG=EDG-CDE可得结果【详解】解:在图1中,AEC=36,ADBC,BCE=180-AEC=144,由折叠可知:ECD=(180-144)2=18,CDE=AEC-ECD=18,
18、DEF=AEC=36,EDG=180-36=144,在图2中,CDG=EDG-CDE=126,故答案为:126【点睛】本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出EDG的度数是解题的关键14101【分析】根据“”的定义进行运算即可求解【详解】解:= =101故答案为:101【点睛】本题考查了新定义运算,理解新定义的法则是解题关键解析:101【分析】根据“”的定义进行运算即可求解【详解】解:= =101故答案为:101【点睛】本题考查了新定义运算,理解新定义的法则是解题关键15二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答【详解
19、】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)16【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解【详解】解:观察前面几个点的坐标得到的横坐标为,纵
20、坐标为,将代入得故答案为:【点睛】此题考查了平面直角坐标系中点坐解析:【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解【详解】解:观察前面几个点的坐标得到的横坐标为,纵坐标为,将代入得故答案为:【点睛】此题考查了平面直角坐标系中点坐标规律的探索,根据已知点找到规律是解题的关键三、解答题17(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式= (2)解:【点睛】本题考查的是实数的运算,求一个数的立方根解析:(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式
21、= (2)解:【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键18(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解【详解】(1)解:;(2)解:解析:(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解【详解】(1)解:;(2)解:【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键19(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)
22、根据平行线的性质及判定填空即可;(2)由EDCE,E50,解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)根据平行线的性质及判定填空即可;(2)由EDCE,E50,可得ABCD,DCE50,而CE平分BCD,即得BCD100,故B80【详解】(1)证明:ADBC,BEAD(两直线平行,同位角相等),EDCE,ABCD(内错角相等,两直线平行),DEAD(两直线平行,内错角相等),BD;故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)解:EDCE,E50,ABCD,
23、DCE50,B+BCD180,CE平分BCD,BCD2DCE100,B80【点睛】本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算20(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可【详解】解:(
24、1)如图所示,即为所求;(2)由题意得:【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法21(1)2,;(2)2,;(3)【分析】(1)仿照题例,可直接求出的整数部分和小数部分;(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;(3)根据题例,先确定a、b,解析:(1)2,;(2)2,;(3)【分析】(1)仿照题例,可直接求出的整数部分和小数部分;(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;(3)根据题例,先确定a、b,再计算a-b即可【详解】解:(1),即的整数部分为2,的小数部分为; (2) ,即 ,
25、的整数部分为1,的整数部分为2,小数部分为 (3),即,的整数部分为2,的整数部分为4,即a4,所以的小数部分为,即b=,【点睛】本题考查了无理数的估算,二次根式的加减看懂题例并熟练运用是解决本题的关键二十二、解答题22(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a
26、 cma2=400又a0a=20又要裁出的长方形面积为300cm2若以原正方形纸片的边长为长方形的长,则长方形的宽为:30020=15(cm)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)长方形纸片的长宽之比为3:2设长方形纸片的长为3xcm,则宽为2xcm6x 2=300x 2=50又x0x =长方形纸片的长为又202即:20小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出
27、的度数;(3)根据灯B的解析:(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的
28、性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键24(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断解析:(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到EAB角度所有可能的值【详解】解:(1)BFD=60,B=45,BAD+D=BFD+B=105,BAD=10
29、5-30=75,BADB,BC和AD不平行,故错误;BAC+DAE=180,BAE+CAD=BAE+CAE+DAE=180,故正确;若BCAD,则BAD=B=45,BAE=45,即AB平分EAD,故正确;故答案为:;(2)相等,理由是:CAD=150,BAE=180-150=30,BAD=60,BAD+D=BFD+B,BFD=60+30-45=45=C;(3)若ACDE,则CAE=E=60,EAB=90-60=30;若BCAD,则B=BAD=45,EAB=45;若BCDE,则E=AFB=60,EAB=180-60-45=75;若ABDE,则D=DAB=30,EAB=30+90=120;若AEB
30、C,则C=CAE=45,EAB=45+90=135;综上:EAB的度数可能为30或45或75或120或135【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题25(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BA解析:(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BAQ与ABQ的和,最后在AB
31、Q中,根据三角形的内角各定理可求AQB的大小第(2)题求P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解【详解】解:(1)AQB的大小不发生变化,如图1所示,其原因如下:mn,AOB90,在ABO中,AOB+ABO+BAO180,ABO+BAO90,又AQ、BQ分别是BAO和ABO的角平分线,BAQBAC,ABQABO,BAQ+ABQ (ABO+BAO)又在ABQ中,BAQ+ABQ+AQB180,AQB18045135(2)如图2所示:P的大小不发生变化,其原因如下:ABF+ABO180,EAB+BAO180BAQ+ABQ90,ABF+EAB36090270,又AP、BP分
32、别是BAE和ABP的角平分线,PABEAB,PBAABF,PAB+PBA (EAB+ABF)270135,又在PAB中,P+PAB+PBA180,P18013545C的大小不变,其原因如下:AQB135,AQB+BQC180,BQC180135,又FBOOBQ+QBA+ABP+PBF180ABQQBOABO,PBAPBFABF,PBQABQ+PBA90,又PBCPBQ+CBQ180,QBC1809090又QBC+C+BQC180,C180904545【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合
33、题26(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键