1、人教七年级下册数学期末解答题培优题(附答案)一、解答题1如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?2工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)3张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来
2、,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?4如图,在33的方格中,有一阴影正方形,设每一个小方格的边长为1个单位请解决下面的问题(1)阴影正方形的面积是_?(可利用割补法求面积)(2)阴影正方形的边长是_?(3)阴影正方形的边长介于哪两个整数之间?请说明理由5某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,
3、围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二、解答题6如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值7(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数8已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M,点N分
4、别是直线CD,EF上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=90时,试判断PM与MN的位置关系,并说明理由;若PA平分EPM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)9已知,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系10如图,已
5、知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围三、解答题11如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足(1)点的坐标为_;点的坐标为_(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束的中点的坐标是,设运动时间为问:是否存在这样的,使?若存在,请求出的值:若不存在,请说
6、明理由(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由12(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点
7、A、C,分别引两条射线、,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t13已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_,_(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数14综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,EFMN,点A、B分别为
8、直线EF、MN上的一点,点P为平行线间一点,请直接写出PAF、PBN和APB之间的数量关系;(问题迁移)(2)如图2,射线OM与射线ON交于点O,直线mn,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动当点P在A、B(不与A、B重合)两点之间运动时,设ADP,BCP则CPD,之间有何数量关系?请说明理由;若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出CPD,之间的数量关系15如图,已知AMBN,A64点P是射线AM上一动点(与点A不重合),BC、BD分别平分ABP和PBN,分别交射线AM于点C,D(1
9、)ABN的度数是 ;AMBN,ACB ;(2)求CBD的度数;(3)当点P运动时,APB与ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使ACBABD时,ABC的度数是 四、解答题16小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在中,是角平分线,是高,、相交于点.求证:;(变式思考)如图2,在中,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长
10、线交于点.直接写出与的数量关系.17如图所示,已知射线.点E、F在射线CB上,且满足,OE平分(1)求的度数;(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数若不存在,请说明理由.18如图,平分,B=450,C=730 (1) 求的度数;(2) 如图,若把“”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;(3) 如图,若把“”变成“平分”,其它条件不变,的大小是否变化,并请说明理由19已知,如图1,直线l2l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与
11、点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值20如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中B
12、D所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)【参考答案】一、解答题1(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为
13、cm,根据题意列出方程,解方程比较4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.2(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积
14、公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案试题解析:(1)正方形的面积是 25 平方分米,正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则 3x2x=18,x2=3,x1= ,x2=(舍去),3x=35,2x=25 ,即这块正方形工料不合格3不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题
15、分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸
16、片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小4(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的解析:(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的面积是33-4=5故答案为:5;(2)设阴影正方形的
17、边长为x,则x2=5x=(-舍去)故答案为:;(3)阴影正方形的边长介于2与3两个整数之间【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法通过观察可知阴影部分的面积是5个小正方形的面积和会利用估算的方法比较无理数的大小5(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方
18、形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二、解答题6(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/
19、GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过
20、O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键7(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可
21、得FPN=PEA+FPE,进而可得PF解析:(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2
22、=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点
23、睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键8(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条解析:(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条件可得到PMMN;过点N作NHCD,利用角平分线的定义以及平行线的性质求得MNH=35,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决【详解】解:(1)PMMN,理由见解析:AB/
24、CD,APM=PMQ,APM+QMN=90,PMQ +QMN=90,PMMN;过点N作NHCD,AB/CD,AB/ NHCD,QMN=MNH,EPA=ENH,PA平分EPM,EPA= MPA,APM+QMN=90,EPA +MNH=90,即ENH +MNH=90,MNQ +MNH +MNH=90,MNQ=20,MNH=35,EPA=ENH=MNQ +MNH=55,EPB=180-55=125,EPB的度数为125;(2)当点M,N分别在射线QC,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM=PMQ, APM +QMN=90;当点M,N分别在射线QC,线段PQ上时,如图:
25、PMMN,AB/CD,PMN=90,APM=PMQ, PMQ -QMN=90,APM -QMN=90;当点M,N分别在射线QD,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM+PMQ=180, APM+90-QMN=180,APM -QMN=90;综上,APM +QMN=90或APM -QMN=90【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键9(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,
26、根据ABCD,EGAB,所以CDEG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BFD;(3)图3中,根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【
27、详解】解:(1)如图1中,过点E作EGAB,则BEG=ABE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+CDE,即BED=ABE+CDE;(2)图2中,因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所以BED=ABE+CDE,BFD=ABF+CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+
28、DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,BED=360-2(ABF+CDF),由(1)得:因为ABCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质10(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据解析:(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻
29、补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键三、解答题11(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不变,值
30、为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据SODP=SODQ,列出关于t的方程,求得t的值即可; (3)过H点作AC的平行线,交x轴于P,先判定OGAC,再根据角的和差关系以及平行线的性质,得出PHO=GOF=1+2,OHC=OHP+PHC=GOF+4=1+2+4,最后代入进行计算即可【详解】解:(1)+|b-2|=0, a-2b=0,b-2=0, 解得a=4,b=2, A(0,4),C(2,0) (2)存在, 理由:如图1中,D(1,2), 由条件可知:P点从C点运
31、动到O点时间为2秒,Q点从O点运动到A点时间为2秒,0t2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t, SDOP=OPyD=(2-t)2=2-t,SDOQ=OQxD=2t1=t, SODP=SODQ, 2-t=t, t=1 (3)结论:的值不变,其值为2理由如下:如图2中,2+3=90, 又1=2,3=FCO, GOC+ACO=180, OGAC, 1=CAO, OEC=CAO+4=1+4, 如图,过H点作AC的平行线,交x轴于P,则4=PHC,PHOG, PHO=GOF=1+2, OHC=OHP+PHC=GOF+4=1+2+4, =2【点睛】本题主要考查三
32、角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题12(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)分AB与C
33、D在EF的两侧,分别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【详解】解:(1)平行理由如下:如图1,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与水平线的夹
34、角为:25+40=65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BAF=105,DCF=65,ACD=180-65-3t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD旋转到与AB都在EF的右侧时,BAF=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180-65+1
35、80)=3t-295,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此情况不存在综上所述,t为5秒或95秒时,CD与AB平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论13(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角
36、的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BCDE时,当BCEF时,当BCDF时,三种情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=BAC,DEA=+BAC,= DEA -BAC=60-45=15,E、C、A三点共线,=180-DFE=180-30=150;故答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DF
37、E=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=45+30-45=30;当BCEF时,如图2,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,ACDE,CAN=DEG=15,BAM=MAN-CAN-BAC=180-15-45=120综上所述,BAM的度数为30或90或120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点14(
38、1)PAFPBNAPB360;(2),见解析;或【分析】(1)作PCEF,如图1,由PCEF,EFMN得到PCMN,根据平行线的性质得PAFAPC180,解析:(1)PAFPBNAPB360;(2),见解析;或【分析】(1)作PCEF,如图1,由PCEF,EFMN得到PCMN,根据平行线的性质得PAFAPC180,PBNCPB180,即有PAFPBNAPB360;(2)过P作PEAD交ON于E,根据平行线的性质,可得到,于是;分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照的方法即可解答【详解】解:(1)PAFPBNAPB360,理由如下:作PCEF,如图1,PCEF,EFMN,PC
39、MN,PAFAPC180,PBNCPB180,PAFAPC+PBNCPB360,PAFPBNAPB360;(2), 理由如下:如答图,过P作PEAD交ON于E, ADBC,PEBC,当P在OB之间时,理由如下: 如备用图1,过P作PEAD交ON于E, ADBC,PEBC,;当P在OA的延长线上时,理由如下:如备用图2,过P作PEAD交ON于E, ADBC,PEBC,;综上所述,CPD,之间的数量关系是或.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补难点是分类讨论作平行辅助线15(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直
40、线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明CBDABN,即可求出结果;(3)不变,APB:ADB2:1,证APBPBN,PBN2DBN,即可推出结论;(4)可先证明ABCDBN,由(1)ABN116,可推出CBD58,所以ABC+DBN58,则可求出ABC的度数【详解】解:(1)AM/BN,A64,ABN180A116,故答案为:116;AM/BN,ACBCBN,故答案为:CBN;(2)AM/BN,ABN+A180,ABN18064116,ABP+PBN116,BC平分ABP,BD平分PBN,ABP2CBP,PBN2DBP,2CBP+2DBP116,CBDCBP+DBP58;(3)不变,APB:ADB2:1,AM/BN,APBPBN,ADBDBN,BD平分PBN,PBN2DBN,APB:ADB2:1;(4)AM/BN,ACB