资源描述
人教版五年级数学下册期末质量检测含答案
1.下图是棱长为1cm的小正方体搭成的,一共有小正方体( )。
A.6个 B.7个 C.8个 D.10个
2.小勇有6根a厘米长和9根b厘米长的小棒,他用其中的12根搭成一个长方体框架。长方体框架的棱长和是( )厘米。
A.6a+9b B.4a+8b C.6(a+b)
3.下面各组数中,三个连续自然数都是合数的是( )。
A.13、14、15 B.7、8、9 C.14、15、16 D.21、22、23
4.小林和小红都去参加游泳训练。小林每6天去一次,小红每8天去一次。7月31日两人同时参加游泳训练后,( ),他们又再次相遇。
A.8月23日 B.8月24日 C.8月25日 D.9月17日
5.在,,,, 中,最简分数有( )个。
A.2 B.3 C.4 D.5
6.两根同样长的绳子,第一根截去,第二根截去绳长的,哪根截去的多?( )
A.第一根 B.第二根 C.同样多 D.不能确定
7.天柱山推出甲,乙两种购票优惠方案(如下)。一家2个大人带3个小孩去游玩,选择( )方案更省钱。
甲方案:成人每位100元,小孩每位40元。
乙方案:团体5人及5人以上每位80元。
A.甲 B.乙 C.甲和乙
8.小明去洗澡,一个热水缸里装了300升水,他洗了6分钟,用了一半的水,然后停止洗澡。6分钟后,小刚去接着洗澡,他也洗了6分钟,正好把水全部用完。下图中,能表示热水缸里水的容量变化的是( )。
A. B.
C. D.
9.3.85立方米=(______)立方分米 (______)(______)
10.是一个大于0的整数,当(______)时,是最大的真分数;当(______)时,是最小的假分数。
11.有一个三位数13□,既是3的倍数又是5的倍数,这个三位数是(________)
12.如果A=2×3×5,B=2×3×7,那么A和B的最小公倍数是(________),最大公因数是(________)。
13.小朋友们做游戏,3人一组余2人,4人一组也余2人,最少有(________)人参加游戏。
14.小明用一些同样的小正方体搭了一个几何体,从正面和上面看到的形状如下图。小明最少用了(________)个这样的小正方体。
15.如图,把一张边长15cm的正方形纸剪成一个“十”字形图片,再折成一个无盖正方体纸盒。这个正方体纸盒用纸(________)cm2,体积是(________)cm3。
16.有27瓶药,其中26瓶质量相同,另有一瓶少5粒。用天平称至少称(______)次,就保证能把这瓶药找出来。
17.直接写出得数。
18.计算下列各题,能简算的要简算。
19.解方程。
20.妈妈去永辉市场买黄瓜。如果妈妈买了3kg黄瓜用去了20元钱。
(1)1元钱可以买多少千克黄瓜?(计算结果用分数表示)
(2)1kg黄瓜卖多少元钱?(计算结果用分数表示)
21.五年级(2)班同学站队,4人一排,5人一排,6人一排都没有剩余。五年级(2)班至少有学生多少人?
22.一个修路队修一条公路,第一天修了米,第二天比第天多修了米,两天一共修了多少千米?
23.一个花坛(如下图),高0.8米,底面是边长1.1米的正方形,四周用木条围成。
(1)这个花坛占地多少平方米?
(2)用泥土填满这个花坛的,大约需要泥土多少立方米?(木条的厚度忽略不计)
(3)做这样一个花坛,四周大约需要木条多少平方米?
24.用一个棱长是5分米的正方体实心铁块和一个长25分米、宽6分米、高5分米的长方体实心铁块熔铸成一个大一点儿的长方体实心铁块,这个长方体的横截面是边长为5分米的正方形,这个长方体的高是多少?
25.画图。
(1)以虚线为对称轴,在方格纸上画出图①的轴对称图形。
(2)在方格纸上画出图②先向下平移3格,再向右平移4格后得到的图形。
26.已知北方甲市和南方乙市2007年各月平均气温如下表。
北方甲市和南方乙市2007年各月平均气温统计表 2008年2月制
月份
气温(℃)
城市
1
2
3
4
5
6
7
8
9
10
11
12
北方甲市
﹣18
﹣15
0
10
24
28
30
30
25
12
5
﹣10
南方乙市
5
16
20
25
30
35
38
38
35
30
20
15
(1)根据上面的统计表绘制折线统计图。
(2)根据上面的统计表填一填。
①这两个城市的月平均最高和最低气温分别出现在( )月和( )月。
②两个城市( )月的温差最大,差是( )摄氏度。
③甲城市年最高气温和最低温度分别是( )摄氏度和( )摄氏度。
1.D
解析:D
【分析】
这个立体图形从左到右,一共由三层组成,每层分别有6个、3个以及1个小正方体,据此利用加法求出小正方体的总数量即可。
【详解】
6+3+1=10(个)
故答案为:D
【点睛】
本题考查了空间观念,有一定的空间观念是解题的关键。
2.B
解析:B
【分析】
由长方体的特征可知,在一个长方体中最多有8条棱的长度相等,最少有4条棱的长度相等,则小勇制作这个长方体框架需要用4根a厘米长的小棒和8根b厘米长的小棒,据此解答。
【详解】
由题意可知,小勇制作的这个长方体框架从同一个顶点引出的3条棱的长度分别为a厘米、b厘米、b厘米
(a+b+b)×4
=(a+2b)×4
=(4a+8b)厘米
故答案为:B
【点睛】
根据长方体特征判断出同一个顶点引出的3条棱的长度是解答题目的关键。
3.C
解析:C
【分析】
一个自然数,如果只有1和它本身两个因数,这个数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数。由此解答即可。
【详解】
A.13、14、15中,13是质数;
B.7、8、9中,7是质数;
C.14、15、16都是合数;
D.21、21、23中,23是质数。
故答案选:C
【点睛】
本题考查质数与合数的意义,根据它们的意义,进行解答。
4.B
解析:B
【分析】
小林每6天去一次,小红每8天去一次,6和8的最小公倍数就是他们相遇两次之间间隔的时间,从7月31日向后推算这个天数即可。
【详解】
6=2×3,
8=2×2×2,
6和8的最小公倍数是:2×2×2×3=24,
所以他们每相隔24天见一次面,7月31日再过24天是8月24日。
故答案为:B
【点睛】
考查了日期和时间的推算,求几个数的最小公倍数的方法。本题关键是找出他们每两次相遇之间相隔的天数,进而根据开始的天数推算求解。
5.B
解析:B
【分析】
最简分数的意义:分子分母是互质数的分数就是最简分数;据此解答即可。
【详解】
在,,,, 中,最简分数有,,,共3个。
故答案为:B
【点睛】
理解掌握最简分数的含义是解题关键。
6.D
解析:D
【分析】
当绳子长度为1米时;
第二根截去:1×=(米);
当绳子长度为1米时,两根绳子截去的长度相等;
当绳子长度为2米时;
第二根截去:2×=1(米);
当绳子长度为2米时,第二根绳子截去的长;
当绳子长度为米时;
第二根截去:×=(米);
当绳子长度为米时,第一根绳子截去的长;
据此可知,绳子长度不同时,截去的长短也会不同,据此解答即可。
【详解】
两根同样长的绳子,第一根截去与,第二根截去绳长的,截去的长短无法确定;
故答案为:D。
【点睛】
解答本题时要考虑全面,绳子长度不同时,截去的长短也会不同。
7.A
解析:A
【分析】
根据题意,分别求出甲方案和乙方案需要的费用,再进行比较,即可解答。
【详解】
甲方案:100×2+3×40
=200+120
=320(元)
乙方案:2+3=5(人)
80×5=400(元)
320<400
选择甲方案更省钱。
故答案选:A
【点睛】
解答本题的关键是明确两种方案不同的优惠方法,分别计算出需要的费用,再进行比较。
8.A
解析:A
【分析】
本题的简要意思就是一共有300毫升水,小明先洗了6分钟,用了一半的水,停了6分后接着洗,又洗了6分钟,正好把水用完。则图像上最高点应为300毫升,最低点是0毫升;停止洗澡的6分钟,应该是一条平行于横轴的线段。
【详解】
A.先洗了6分钟用了一半的水,接着停了6分钟,又洗了6分钟,正好把水全部用完;
B.先洗了6分钟,只是用了300-100=200(毫升)水,接着停了18-6=12(分钟),又洗了6分钟,正好把水用完;
C.匀速洗了12分钟,正好把水全部用完;
D.匀速洗了18分钟,正好把水全部用完。
故答案为:A。
【点睛】
要能够把图象蕴含的意思表述出来,由纵轴可以看出:下降的直线表示热水的量由高到低;由横轴可以看出:下降的直线对应的横轴数据为时间,表示几时到几时水的量在下降。
9.4 40
【分析】
把高级单位的数改写成低级单位的数:进率×高级单位的数;
单名数改写成复名数,前面整数部分的数不动,作为复名数中高级单位的数,只把小数部分的数改写成低级单位的数。
【详解】
3.85立方米=3.85×1000立方分米=3850立方分米
4.04mL=4L+0.04×1000mL=4L+40mL=4L40mL
【点睛】
理解高低级单位转化的规律;且能够对于单名数、复名数之间的转化方式较为熟悉,区分好哪些量不变、哪些量变化。
10.6
【分析】
分子小于分母的分数叫做真分数,分子大于或等于分母的分数叫做假分数,据此解答。
【详解】
已知a 是一个大于0的整数,是真分数,则a>6,根据同分子分数的大小比较方法,当7时,是最大的真分数;
是假分数,则a≥6,根据同分母分数的大小比较方法,当6时,是最小的假分数。
【点睛】
根据真分数、假分数的意义,结合分数的大小比较方法进行解答。
11.135
【分析】
3的倍数特征:各个位上数字相加的和是3的倍数;5的倍数特征:个位数字是0或5的数是5的倍数;
先根据5的倍数特征判断,这个三位数的个位数字是0或5,当个位数字是0时,1+3+0=4,4不是3的倍数,则个位数字不能是0;
当个位数字是5时,1+3+5=9,9是3的倍数,则这个三位数的个位数字是5。
【详解】
有一个三位数13□,既是3的倍数又是5的倍数,这个三位数是(135)。
【点睛】
掌握3和5的倍数特征是解答题目的关键。
12.A
解析:6
【分析】
由题意知:A=2×3×5,B=2×3×7,A和B的最小公倍数是:2×3×5×7,最大公因数是2×3,据此解答。
【详解】
由分析知:A和B的最小公倍数是:2×3×5×7=210,最大公因数是2×3=6。
【点睛】
掌握求两个数的最大公因数和最小公倍数的方法是解答本题的关键。
13.14
【分析】
求最少有多少人,根据题意,也就是求3和4的最小公倍数多2的数是多少,据此解答。
【详解】
3和4是互质数
3和4的最小公倍数是:
3×4=12
最少人数是:
12+2=14(人)
【点睛】
本题考查最小公倍数的求法:两个公有质因数与每一个独有质因数的连乘积是最小公倍数。
14.6
【分析】
如图,是用小正方体最少的一种摆法,共2层,第一层根据从上面看的样子有4个小正方体,第二层根据从正面看的样子有2个小正方体,据此分析。
【详解】
4+2=6(个)
【点睛】
此类问题可以画一画示意图,或具有一定的空间想象能力。
15.125
【分析】
观察图形,剪成的正方体的棱长是5厘米。据此,结合正方体的表面积和体积公式,求出这个正方体纸盒用纸的面积,以及它的体积。
【详解】
棱长:15÷3=5(厘米),
用纸面积:5
解析:125
【分析】
观察图形,剪成的正方体的棱长是5厘米。据此,结合正方体的表面积和体积公式,求出这个正方体纸盒用纸的面积,以及它的体积。
【详解】
棱长:15÷3=5(厘米),
用纸面积:5×5×5=125(平方厘米),
体积:5×5×5=125(立方厘米)
【点睛】
本题考查了正方体的表面积和体积,无盖正方体的表面积等于棱长乘棱长乘5,正方体的体积等于棱长乘棱长乘棱长。
16.3
【分析】
根据找次品的方法, 在用天平找次品时(只含一个次品,已知次品比正品重或轻),所测物品数目与测试的次数有一定的关系:
要辨别的物品数目保证能找出次品需要测的次数2~314~9
解析:3
【分析】
根据找次品的方法, 在用天平找次品时(只含一个次品,已知次品比正品重或轻),所测物品数目与测试的次数有一定的关系:
要辨别的物品数目
保证能找出次品需要测的次数
2~3
1
4~9
2
10~27
3
28~81
4
⋯
⋯
据此关系即可填空。
【详解】
据分析知:所测数目是27瓶,在10~27范围内,故至少要3次能保证找出次品。
【点睛】
掌握找次品时所测物品数目与测试的次数之间的关系,这是解决此题的关键。
17.;;;;0.09;
1;;;;2500
【分析】
【详解】
略
解析:;;;;0.09;
1;;;;2500
【分析】
【详解】
略
18.;3;;
;
【分析】
根据加法交换律和结合律计算即可;
利用减法性质进行简算;
利用减法性质进行简算;
先把分母进行通分再按照从左往右的顺序依此计算。
【详解】
=
=
=
=
=
=3
=
解析:;3;;
;
【分析】
根据加法交换律和结合律计算即可;
利用减法性质进行简算;
利用减法性质进行简算;
先把分母进行通分再按照从左往右的顺序依此计算。
【详解】
=
=
=
=
=
=3
=
=
=
=
=
=
=
19.或;x=0.2
【分析】
根据等式的基本性质,方程两边同时加上即可;
根据等式的基本性质2,方程两边同时乘上0.4,再同时除以5即可。
【详解】
解:
或
解:5x÷0.4×0.4=2.5×0.
解析:或;x=0.2
【分析】
根据等式的基本性质,方程两边同时加上即可;
根据等式的基本性质2,方程两边同时乘上0.4,再同时除以5即可。
【详解】
解:
或
解:5x÷0.4×0.4=2.5×0.4
5x=1
x=0.2
20.(1)千克
(2)元
【分析】
(1)求1元钱可以买多少千克黄瓜,就用黄瓜的总质量除以需要的总钱数即可;
(2)求1kg黄瓜卖多少元钱,就是求黄瓜的单价,用总价除以黄瓜的质量即可。
【详解】
(1)
解析:(1)千克
(2)元
【分析】
(1)求1元钱可以买多少千克黄瓜,就用黄瓜的总质量除以需要的总钱数即可;
(2)求1kg黄瓜卖多少元钱,就是求黄瓜的单价,用总价除以黄瓜的质量即可。
【详解】
(1)(kg)
答:1元钱可以买千克黄瓜。
(2)(元)
答:1kg黄瓜卖元钱。
【点睛】
解决本题关键是清楚哪个量是单一量,然后把另一个量进行平均分。
21.60人
【分析】
求出三种站法每排人数的最小公倍数就是最少人数。
【详解】
4=2×2
6=2×3
2×2×3×5=60(人)
答:五年级(2)班至少有学生60人。
【点睛】
全部公有的质因数和各自
解析:60人
【分析】
求出三种站法每排人数的最小公倍数就是最少人数。
【详解】
4=2×2
6=2×3
2×2×3×5=60(人)
答:五年级(2)班至少有学生60人。
【点睛】
全部公有的质因数和各自独立的质因数,它们连乘的积就是这几个数的最小公倍数。
22.米
【分析】
根据加法的意义,先求出第二天修的长度,再把第一天和第二天修的加起来即可。
【详解】
++
=++
=(米)
答:两天一共修了千米。
【点睛】
解答此题的关键是先求出第二天修的长度;应注
解析:米
【分析】
根据加法的意义,先求出第二天修的长度,再把第一天和第二天修的加起来即可。
【详解】
++
=++
=(米)
答:两天一共修了千米。
【点睛】
解答此题的关键是先求出第二天修的长度;应注意结果化成最简分数。
23.(1)1.21平方米;
(2)0.726立方米;
(3)3.52平方米
【分析】
(1)这个花坛占地面积就是求底面正方形的面积;
(2)用泥土填满这个花坛的,就是求这个长方体的体积的;
(3)四周大
解析:(1)1.21平方米;
(2)0.726立方米;
(3)3.52平方米
【分析】
(1)这个花坛占地面积就是求底面正方形的面积;
(2)用泥土填满这个花坛的,就是求这个长方体的体积的;
(3)四周大约需要木条的面积,就是求这个长方体的四个侧面的面积。
【详解】
(1)1.1×1.1=1.21(平方米)
答:这个花坛占地1.21平方米。
(2)1.1×1.1×0.8×
=0.968×0.75
=0.726(立方米)
答:大约需要泥土0.726立方米。
(3)1.1×0.8×4=3.52(平方米)
答:四周大约需要木条3.52平方米。
【点睛】
解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题。
24.35分米
【分析】
根据题意,正方体实心铁块和长方体实心铁块的体积之和等于熔铸成的大一点儿长方体实心铁块的体积。正方体的体积=棱长×棱长×棱长,长方体的体积=长×宽×高,据此求出原来的两个铁块体积之
解析:35分米
【分析】
根据题意,正方体实心铁块和长方体实心铁块的体积之和等于熔铸成的大一点儿长方体实心铁块的体积。正方体的体积=棱长×棱长×棱长,长方体的体积=长×宽×高,据此求出原来的两个铁块体积之和,再除以熔铸成的长方体的长和宽即可求出高。
【详解】
5×5×5+25×6×5
=125+750
=875(立方分米)
875÷5÷5=35(分米)
答:这个长方体的高是35分米。
【点睛】
立体图形形状改变后,体积不变。
25.见详解
【分析】
(1)补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形;
(2)作平移后的图形步骤:
(1)找点,找出构成图
解析:见详解
【分析】
(1)补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形;
(2)作平移后的图形步骤:
(1)找点,找出构成图形的关键点;
(2)定方向、距离,确定平移方向和平移距离;
(3)画线,过关键点沿平移方向画出平行;
(4)定点,由平移的距离确定关键点平移后的对应点的位置;
(5)连点,连接对应点。
【详解】
【点睛】
掌握补全轴对称图形的方法和作平移后的图形的步骤是解答此题的关键。
26.(1)见详解
(2)①7、8;1
②2;31
③30;﹣18
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴、横轴的单位长度,画出纵轴和横轴
解析:(1)见详解
(2)①7、8;1
②2;31
③30;﹣18
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴、横轴的单位长度,画出纵轴和横轴,并画出方格图;根据各数量的多少,在方格图的纵线或横线(或纵、横的交点)上描出表示数量多少的点;把各点用线段顺次连接起来;写出标题,注明单位,可以写明调查日期或制图日期。复式折线统计图还要画出图例。
(2)①观察统计图,数据点位置越低表示气温越低,数据点位置越高表示气温越高;
②数据点距离越远表示温差越大,求差即可;
③实线表示甲市数据,找到数据点位置最高和最低的的数据即可。
【详解】
(1)
(2)①这两个城市的月平均最高和最低气温分别出现在7、8月和1月。
②16+15=31(摄氏度),两个城市2月的温差最大,差是31摄氏度。
③甲城市年最高气温和最低温度分别是30摄氏度和﹣18摄氏度。
【点睛】
折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
展开阅读全文