资源描述
重点中学七年级上册期末数学模拟试卷
一、选择题
1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )
A.0.65×108 B.6.5×107 C.6.5×108 D.65×106
2.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为( )
A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106
3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等的图形是( )
A. B. C. D.
4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出个位置的个数(如,,,,,,,,,,,,,,,).若用这样的正方形圈出这张数字卡片上的个数,则圈出的个数的和不可能为下列数中的( )
A. B.
C. D.
5.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为() m
A. B. C. D.
6.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;②;③;④ 40m+25 = 45m- 5 .其中正确的是( )
A.①③ B.①② C.②④ D.③④
7.下列各数中,有理数是( )
A. B. C.3.14 D.
8.如图,能判定直线a∥b的条件是( )
A.∠2+∠4=180° B.∠3=∠4 C.∠1+∠4=90° D.∠1=∠4
9.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为( )
A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60
10.如图,两块直角三角板的直角顶点重叠在一起,且恰好平分,则的度数为( )
A. B. C. D.
二、填空题
11.已知关于x的一元一次方程①与关于y的一元一次方程②,若方程①的解为x=2020,那么方程②的解为_____.
12.﹣30×(+)=_____.
13.如图所示,,,BP平分则______度
14.把(a﹣b)看作一个整体,合并同类项:=_____.
15.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.
16.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a=____.
17.如图,已知线段,点在上,分别为的中点,则的长为____________.
18.规定:用{m}表示大于 m 的最小整数,例如{}= 3,{4} = 5,{-1.5}= -1等;用[m] 表示不大于 m 的最大整数,例如[ ]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x}+2[x]=23,则 x =________________.
19.已知关于的方程的解是,则的值为______.
20.若-3x2m+6y3与2x4yn是同类项,则m+n=______.
三、解答题
21.计算
(1)
(2)
22.计算
(1).
(2).
23.解方程(组):
(1)
(2).
24.已知方程与关于 x 的方程3a-8=2(x+a)-a的解相同.
(1)求 a 的值;
(2)若 a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c)2018的值.
25.如图,直线AB、CD、MN相交于O,∠DOB=60°,BO⊥FO,OM平分∠DOF.
(1)求∠MOF的度数;
(2)求∠AON的度数;
(3)请直接写出图中所有与∠AON互余的角.
26.如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.
27.如图,点P是线段AB上的一点,请在图中完成下列操作.
(1)过点P画BC的垂线,垂足为H;
(2)过点P画AB的垂线,交BC于Q;
(3)线段 的长度是点P到直线BC的距离.
28.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:
(1)一个暖瓶与一个水杯的售价分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.
29.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.
30.已知,数轴上点、对应的数分别为、,且满足,点对应点的数为-3.
(1)______,______;
(2)若动点、分别从、同时出发向右运动,点的速度为3个单位长度/秒;点的速度为1个单位长度/秒,求经过多长时间、两点的距离为;
(3)在(2)的条件下,若点运动到点立刻原速返回,到达点后停止运动,点运动至点处又以原速返回,到达点后又折返向运动,当点停止运动点随之停止运动.求在整个运动过程中,两点,同时到达的点在数轴上表示的数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
详解:65 000 000=6.5×107.
故选B.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.C
解析:C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
试题分析:384 000=3.84×105.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.C
解析:C
【解析】
【分析】
根据余角与补角的性质进行一一判断可得答案.
.
【详解】
解:A,根据角的和差关系可得∠α=∠β=45;
B,根据同角的余角相等可得∠α=∠β;
C,由图可得∠α不一定与∠β相等;
D,根据等角的补角相等可得∠α=∠β.
故选C.
【点睛】
本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.
4.C
解析:C
【解析】
【分析】
由题意设第一列第一行的数为x,依次表示每个数,并相加进行分析得出选项.
【详解】
解:设第一列第一行的数为x,第一行四个数分别为,
第二行四个数分别为,
第三行四个数分别为,
第四行四个数分别为,
16个数相加得到,当相加数为208时x为1,当相加数为480时x为18,相加数为496时x为19,相加数为592时x为25,由数字卡片可知,x为19时,不满足条件.
故选C.
【点睛】
本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.
5.C
解析:C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000104=1.04×10−4.
故选:C.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6.A
解析:A
【解析】
【分析】
首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
【详解】
根据总人数列方程,应是40m+25=45m+5,①正确,④错误;
根据客车数列方程,应该为,③正确,②错误;
所以正确的是①③.
故选A.
【点睛】
此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.
7.C
解析:C
【解析】
【分析】
根据有理数及无理数的概念逐一进行分析即可得.
【详解】
A. 是无理数,故不符合题意;
B. 是无理数,故不符合题意;
C. 3.14是有理数,故符合题意;
D. 是无理数,故不符合题意,
故选C.
【点睛】
本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.
8.D
解析:D
【解析】
【分析】
根据平行线的判定方法逐一进行分析即可得.
【详解】
A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;
B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;
C. ∠1+∠4=90°,不能判定a//b,故不符合题意;
D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,
故选D.
【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
9.D
解析:D
【解析】
【分析】
要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程
【详解】
解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,
可列方程:300×0.8-x=60
故选:D
【点睛】
本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:
(1)利润、售价、进价三者之间的关系;
(2)打八折的含义.
10.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB平分∠COD,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C.
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
二、填空题
11.y=﹣.
【解析】
【分析】
根据题意得出x=﹣(3y﹣2)的值,进而得出答案.
【详解】
解:∵关于x的一元一次方程①的解为x=2020,
∴关于y的一元一次方程②中﹣(3y﹣2)=2020,
解
解析:y=﹣.
【解析】
【分析】
根据题意得出x=﹣(3y﹣2)的值,进而得出答案.
【详解】
解:∵关于x的一元一次方程①的解为x=2020,
∴关于y的一元一次方程②中﹣(3y﹣2)=2020,
解得:y=﹣.
故答案为:y=﹣.
【点睛】
此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.
12.﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.
【详解】
解:﹣30×(+)
=﹣30×+(﹣30)×()+(﹣30)×
=﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛
解析:﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.
【详解】
解:﹣30×(+)
=﹣30×+(﹣30)×()+(﹣30)×
=﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.
13.60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP平分 ,所以只要求 的度数即可.
【详解】
解:,,
,
平分,
.
故答案为60.
【点睛】
解析:60
【解析】
【分析】
本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP平分 ,所以只要求 的度数即可.
【详解】
解:,,
,
平分,
.
故答案为60.
【点睛】
角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.
14.【解析】
【分析】
根据合并同类项,系数相加,字母及指数不变,可得答案.
【详解】
解:,
故答案为:.
【点睛】
本题考查合并同类项,熟记合并同类项的法则是解题的关键.
解析:
【解析】
【分析】
根据合并同类项,系数相加,字母及指数不变,可得答案.
【详解】
解:,
故答案为:.
【点睛】
本题考查合并同类项,熟记合并同类项的法则是解题的关键.
15.从不同的方向观察同一物体时,看到的图形不一样.
【解析】
【分析】
根据三视图的观察角度,可得答案.
【详解】
根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,
“横看成岭侧成峰”从数
解析:从不同的方向观察同一物体时,看到的图形不一样.
【解析】
【分析】
根据三视图的观察角度,可得答案.
【详解】
根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,
“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.
故答案为:从不同的方向观察同一物体时,看到的图形不一样.
【点睛】
本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.
16.8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一
解析:8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.
17.6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1
解析:6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1:3,
∴AM=4cm.BM=12cm,
∵P,Q分别为AM,AB的中点,
∴AP=AM=2cm,AQ=AB=8cm,
∴PQ=AQ-AP=6cm;
故答案为:6cm.
【点睛】
本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.
18.4
【解析】
【分析】
由题意可得,求解即可.
【详解】
解:
解得
故答案为:4
【点睛】
本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.
解析:4
【解析】
【分析】
由题意可得,求解即可.
【详解】
解:
解得
故答案为:4
【点睛】
本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.
19.5
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得
∴
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
解析:5
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得
∴
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
20.2
【解析】
【分析】
根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.
【详解】
∵单项式-3x2m+6y3与2x4yn是同类项,
∴2m+6=4,n=3,
∴m=-1,
∴m+n
解析:2
【解析】
【分析】
根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.
【详解】
∵单项式-3x2m+6y3与2x4yn是同类项,
∴2m+6=4,n=3,
∴m=-1,
∴m+n=-1+3=2.
故答案为:2.
【点睛】
本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.
三、解答题
21.(1)2;(2).
【解析】
【分析】
(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;
(2)先去括号,然后再进行加减运算即可.
【详解】
(1)
=5-3
=2;
(2)
=
=.
【点睛】
本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.
22.(1);(2)
【解析】
【分析】
(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果;
(2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.
【详解】
解:(1) 原式;
(2)原式.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
23.(1);(2)原方程无解.
【解析】
【分析】
(1)利用加减消元法即可解答
(2)先去分母,再移项合并同类项即可
【详解】
(1)
由,得③
由,并化简,得
把代入①,并化简,得
∴
(2)解:原式两边同时乘以,得
∴
经检验:是增根,舍去
∴原方程无解.
【点睛】
此题考查解二元一次方程组和解分式方程,解题关键在于掌握运算法则
24.(1);(2)1.
【解析】
【分析】
(1)先求出方程的解x=-8,再代入方程3a-8=2(x+a)-a求出a的值即可;
(2)根据数a,b在数轴上的位置特点,可知a,b互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c)2018,根据运算法则即可得出结果.
【详解】
(1)解得,
再将代入,解得,
(2)∵a,b互为相反数,
∴a+b=0,
∵c 是倒数等于本身的数,
∴c=±1;
∴
【点睛】
本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.
25.(1)15°;(2)75;(3)∠CON、∠DOM、∠MOF.
【解析】
【分析】
(1)根据∠DOF=∠BOF-∠DOB,首先求得∠DOF的度数,然后根据角平分线的定义求解;
(2)首先求得∠BOM的度数,然后根据对顶角相等即可求解;
(3)根据∠MOF=∠MOF=15°,∠AON=∠BOM=75°,据此即可写出.
【详解】
(1)∵∠DOB=60°,BO⊥FO,
∴∠DOF=∠BOF-∠DOB=90°-60°=30°,
又∵OM平分∠DOF,
∴∠MOF=∠DOF=15°;
(2)∵∠BOM=∠MOF+∠DOB=15°+60°=75°,
∴∠AON=∠BOM=75°;
(3)与∠AON互余的角有:∠CON、∠DOM、∠MOF.
【点睛】
本题考查了角的平分线的定义,以及对顶角相等,正确理解角平分线的定义是关键.
26.(1)面积为5,边长为;(2)详见解析.
【解析】
【分析】
(1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)根据正方形的面积为10,可得这个正方形的边长为,根据格点的特征结合勾股定理画出边长为的正方形即可.
【详解】
(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5;
边长=;
(2)能,如图所示:边长=,
.
【点睛】
本题考查了勾股定理,正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.正方形的面积是由组成正方形的面积的小正方形的个数决定的;边长为面积的算术平方根.
27.(1)详见解析;(2)详见解析;(3)PH.
【解析】
【分析】
利用尺规作出过一点作已知直线的垂线即可解决问题.
【详解】
解:(1)过点P画BC的垂线,垂足为H,如图所示;
(2)过点P画AB的垂线,交BC于Q,如图所示;
(3)线段PH的长度是点P到直线BC的距离.
故答案为PH.
【点睛】
本题考查作图-基本作图,点到直线的距离等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
28.(1)一个暖瓶的售价是30元,一个水杯的售价是8元;(2)这个单位在甲商场购买更算.
【解析】
【分析】
(1)根据“暖瓶+水杯=38元”和“2个暖瓶的价格+3个水杯的价格=84元”这两个关系式,设暖瓶为x元,用x将水杯的售价表示出来,然后列出一元一次方程求解即可.
(2)根据售价×折扣=实际售价,分别计算两个方案各自的售价,然后对比判断即可解决.
【详解】
(1)设一个暖瓶售价元,则一个水杯售价是元.
依题意得:,
解得:.
38-30=8(元).
因此,一个暖瓶的售价是30元,一个水杯的售价是8元.
(2)这个单位在甲商场购买更算.
理由:在甲商场购买所需费用为:(元);
在乙商场购买所需费用为:(元);
因为210.8<216,
所以这个单位在甲商场购买更算.
【点睛】
本题考查了一元一次方程解决问题和方案选择问题,解决本题的关键是正确理解题意,找到等量关系,能够根据各自的方案计算其所需的费用.
29.﹣8.
【解析】
【分析】
根据去括号、合并同类项,可化简整式,把未知数的值代入,可得答案.
【详解】
解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y
=(2﹣2)x2y+(2﹣2)xy2+2x﹣2y
=2x﹣2y,
当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣8.
考点:整式的加减—化简求值.
30.(1)-7,1.(2)经过秒或秒,两点的距离为.(3)在整个运动过程中,两点,同时到达的点在数轴上表示的数分别是-1,0,-2.
【解析】
【分析】
(1)由绝对值和偶次方的非负性列方程组可解;
(2)设经过t秒两点的距离为,根据题意列绝对值方程求解即可;
(3)分类讨论:点P未运动到点C时;点P运动到点C返回时;当点P返回到点A时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.
【详解】
(1)由非负数的性质可得:,
∴,,
故答案为:-7,1;
(2)设经过秒两点的距离为,
由题意得:,
解得或,
答:经过秒或秒,两点的距离为;
(3)点未运动到点时,设经过秒,相遇,
由题意得:,
∴,
表示的数为:,
点运动到点返回时,设经过秒,相過,
由题意得:,
∴,
表示的数是:,
当点返回到点时,用时秒,此时点所在位置表示的数是,
设再经过秒相遇,
由题意得:,
∴,
表示的数是:,
答:在整个运动过程中,两点,同时到达的点在数轴上表示的数分别是-1,0,-2.
【点睛】
本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.
展开阅读全文