收藏 分销(赏)

2023黄冈市八年级上册期末数学试卷.doc

上传人:丰**** 文档编号:4880665 上传时间:2024-10-17 格式:DOC 页数:19 大小:1.53MB
下载 相关 举报
2023黄冈市八年级上册期末数学试卷.doc_第1页
第1页 / 共19页
2023黄冈市八年级上册期末数学试卷.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述
2023黄冈市八年级上册期末数学试卷 一、选择题 1、下列是我们一生活中常见的安全标识,其中不是轴对称图形的是(       ) A. B. C. D. 2、石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是(       ) A.3.4×10-9 B.0.34×1010 C.3.4×10-10 D.3.4×10-11 3、下列运算正确的是(       ) A. B. C. D. 4、要使分式有意义,则x的取值应满足(       ) A. B. C. D. 5、下列各式从左边到右边的变形中,属于因式分解的是(       ) A.a(x+y)=ax+ay B.10x-5=5x(2-) C.y2-4y+4=(y-2)2 D.t2-16+3t=(t+4)(t-4)+3t 6、已知,则下列说法错误的是(       ) A. B. C. D. 7、如图,已知,要得到,还需从下列条件中补选一个,则错误的选法是(       ) A. B. C. D. 8、关于x的分式方程的解为正数,则m的取值范围是(  ) A.m>2 B.m<2 C.m<2且m≠0 D.m≠0 9、如图,在中,是延长线上一点,,,则等于(          ) A. B. C. D. 二、填空题 10、如图,两个正方形的边长分别为a、b,若,,则阴影部分的面积是(       ) A.40 B. C.20 D.23 11、分式的值为0,则x=________. 12、点P(-2,4)关于x轴对称的点的坐标为________. 13、已知,则的值是______. 14、已知:,,,则的值=______. 15、如图,四边形ABCD中,,,E、F分别是AD、AB上的动点,当的周长最小时,的度数是______. 16、如图,将△ABC绕点A顺时针旋转角100°,得到△ADE,若点E恰好在CB的延长线上,则∠BED等于_______度. 17、若(2022-a)(2021-a)=2020,则(2022-a)2+(2021-a)2=____________. 18、如图,直线PQ经过Rt△ABC的直角顶点C,△ABC的边上有两个动点D、E,点D以1cm/s的速度从点A出发,沿AC→CB移动到点B,点E以3cm/s的速度从点B出发,沿BC→CA移动到点A,两动点中有一个点到达终点后另一个点继续移动到终点.过点D、E分别作DM⊥PQ,EN⊥PQ,垂足分别为点M、N,若AC=6cm,BC=8cm,设运动时间为t,则当t=__________ s时,以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等. 三、解答题 19、因式分解: (1) (2) 20、解分式方程: 21、如图,点、、、在同一条直线上,,,.求证: (1); (2). 22、在学习完《6、5三角形内角和定理》,小芳和同学们作如下探究: 已知:在中,,分别是的边,上的点,点是边上的一个动点,令,. (1)他们探究得到:四边形的内角和是. 理由如下:如图①,连接, 在和中, , ( ). ( ). . 即四边形的内角和是. (2)如图①,点在线段上,且,求的度数. (3)如果点运动到的延长线上,请在图②中补全图形,并直接写出,,之间的等量关系. 23、某商店用6000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了50%,同样用6000元购进的数量比第一次少了40件. (1)求第一次每件的进价为多少元? (2)若两次购进的玩具售价均为80元,且全部售完,求两次的总利润为多少元? 24、(1)如图,整个图形是边长为的正方形,其中阴影部分是边长为的正方形,请根据图形,猜想与存在的等量关系,并证明你的猜想; (2)根据(1)中得出的结论,解决下列问题: 甲、乙两位司机在同一加油站两次加油,两次油价有变化,两位司机采用不同的加油方式.其中,甲每次都加40升油,乙每次加油费都为300元.设两次加油时,油价分别为m元/升,n元/升(,,且). ①求甲、乙两次所购的油的平均单价各是多少? ②通过计算说明,甲、乙哪一个两次加油的平均油价比较低? 25、已知:,. (1)当a,b满足时,连接AB,如图1. ①求:的值. ②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:. (2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论. 一、选择题 1、B 【解析】B 【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:A、B、D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形; C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形; 故选:C. 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2、C 【解析】C 【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案. 【详解】解: 故选C. 【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 3、D 【解析】D 【分析】直接利用幂的乘方和积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案. 【详解】解:A、,故此选项错误; B、,故此选项错误; C、,故此选项错误; D、,故此选项正确; 故选:D. 【点睛】此题主要考查了幂的乘方和积的乘方运算法则、同底数幂的乘除法,正确掌握相关运算法则是解题关键. 4、B 【解析】B 【分析】利用分式有意义则分母不等于零,即可得出答案. 【详解】解:要使分式有意义,则x+2≠0, 解得:x≠-1、 故选:B. 【点睛】此题主要考查了分式有意义的条件,正确掌握分式有意义的条件是解题关键. 5、C 【解析】C 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可. 【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意; B、右边不是整式积的形式(含有分式),不是因式分解,故此选项不符合题意; C、符合因式分解的定义,是因式分解,故此选项符合题意; D、右边不是整式积的形式,不是因式分解,故此选项不符合题意; 故选:C. 【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义. 6、B 【解析】B 【分析】设,,代入各项验证即可. 【详解】解:∵, ∴设,, A.,说法正确,不符合题意; B.,∴,该项说法错误,符合题意; C.,说法正确,不符合题意; D.,,故,说法正确,不符合题意; 故选:B. 【点睛】本题考查判断分式的变形,掌握“见比设参”的原则是解题的关键. 7、B 【解析】B 【分析】利用全等三角形的判定方法依次分析即可. 【详解】A.AB=AC,∠1=∠2,AD=AD,利用SAS可判定△ABD≌△ACD,故A不符合题意 B.DB=DC,∠1=∠2,AD=AD,利用SSA不可判定△ABD≌△ACD,故B符合题意; C.∠ADB=∠ADC,∠1=∠2,AD=AD,利用ASA可判定△ABD≌△ACD,故C不符合题意; D.∠B=∠C,∠1=∠2,AD=AD,利用AAS可判定△ABD≌△ACD,故D不符合题意. 故选:B. 【点睛】本题考查全等三角形的判定.熟练掌握SSS、SAS、ASA、AAS是本题解题的关键. 8、C 【解析】C 【分析】根据分式方程的解为正数和分式方程有意义,得出x的取值范围,再解分式方程,解得,代入x的取值范围即可算出m的取值范围. 【详解】解:∵关于x的分式方程的解为正数, ∴且 ∴且 去分母得: 化简得: ∴且 解得:且, 故选:C. 【点睛】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键. 9、A 【解析】A 【分析】根据三角形外角性质:三角形的一个外角等于和它不相邻的两个内角的和,经计算即可得到答案. 【详解】解:∵是延长线上一点, ∴, ∵,, ∴ 故选:A. 【点睛】本题考查了三角形外角的知识;解题的关键是熟练掌握三角形外角的性质,从而完成求解. 二、填空题 10、C 【解析】C 【分析】根据阴影部分面积等于2个正方形面积减去2个空白部分的三角形面积,进而根据完全平方公式的变形求解即可 【详解】解:阴影部分面积等于 ∵,, ∴阴影部分面积等于 故答案为:C 【点睛】本题考查了完全平方公式变形求图形面积,掌握完全平方公式是解题的关键. 11、1 【分析】根据分式值为0以及分式有意义的条件求解即可. 【详解】解:分式的值为0, ,且 故答案为: 【点睛】本题考查了分式的值为0的条件,掌握分式的值为0即分子为0,分母不为0是解题的关键. 12、 【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解. 【详解】解:点P(-2,4)关于x轴对称的点的坐标为, 故答案为:. 【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键. 13、##-0.25 【分析】先把所给等式的左边通分,再相减,可得,再根据等式性质可得,即可得出,再代入,化简即可求出结果. 【详解】解:∵, ∴, ∴, ∴, ∴. 故答案是:. 【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出,是解题关键. 14、 【分析】逆用同底数幂的乘除法,逆用幂的乘方,进而即可求解. 【详解】解:,,, 故答案为: 【点睛】本题考查了同底数幂的乘除法,幂的乘方,掌握同底数幂的乘除法法则,幂的乘方法则是解题的关键. 15、40°##40度 【分析】要使△CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用△CMN内角和即可得出答案. 【详解】作C关于BA 【解析】40°##40度 【分析】要使△CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用△CMN内角和即可得出答案. 【详解】作C关于BA和AD的对称点N,M,连接MN,交AD于E1,交AB于F1,则MN即为△CEF的周长最小值. ∵,, ∴∠DCB=110°, 由对称可得:CF1=F1N,E1C=E1M, ∴, ∵, ∴, ∴, 即当的周长最小时,的度数是40°, 故答案为:40°. 【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质、等边对等角等知识,根据已知得出的周长最小时,E,F的位置是解题关键. 16、80 【分析】证明∠ABE+∠ADE=180°,推出∠BAD+∠BED=180°即可解决问题. 【详解】解:∵将△ABC绕点A顺时针旋转角100°,得到△ADE, ∴△ABC≌△ADE,∠BAD=1 【解析】80 【分析】证明∠ABE+∠ADE=180°,推出∠BAD+∠BED=180°即可解决问题. 【详解】解:∵将△ABC绕点A顺时针旋转角100°,得到△ADE, ∴△ABC≌△ADE,∠BAD=100° ∴∠ABC=∠ADE, 又∠ABC+∠ABE=180°, ∴∠ABE+∠ADE=180°, ∴∠BAD+∠BED=360°-(∠ABE+∠ADE)=180°, ∵∠BAD=100°, ∴∠BED=180°- 100°=80°. 故答案为:80. 【点睛】本题考查旋转的性质,解题的关键是理解题意,灵活运用所学知识解决问题. 17、4041 【分析】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2020,进而根据完全平方公式变形求解即可. 【详解】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2 【解析】4041 【分析】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2020,进而根据完全平方公式变形求解即可. 【详解】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2020, 原式=x2+y2=(x+y)2-2xy=4041 故答案为:4041 【点睛】本题考查了完全平方公式变形求值,掌握完全平方公式以及换元思想是解题的关键. 18、1或或12 【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在A 【解析】1或或12 【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在AC上,D在AC上时,或当E到达A,D在BC上时,分别讨论. 【详解】解:当E在BC上,D在AC上,即0<t≤时, CE=(8-3t)cm,CD=(6-t)cm, ∵以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等. ∴CD=CE, ∴8-3t=6-t, ∴t=1s, 当E在AC上,D在AC上,即<t<时, CE=(3t-8)cm,CD=(6-t)cm, ∴3t-8=6-t, ∴t=s, 当E到达A,D在BC上,即≤t≤14时, CE=6cm,CD=(t-6)cm, ∴6=t-6, ∴t=12s, 故答案为:1或或11、 【点睛】本题主要考查了三角形全等的性质,解决问题的关键是对动点所在的位置进行分类,分别表示出每种情况下CD和CE的长. 三、解答题 19、(1) (2) 【分析】(1)先提取公因式,再运用完全平方公式进行解答即可; (2)先运用平方差公式,再运用完全平方公式进行解答即可. (1) 解:解:原式 (2) 原式 . 【点睛】本题考 【解析】(1) (2) 【分析】(1)先提取公因式,再运用完全平方公式进行解答即可; (2)先运用平方差公式,再运用完全平方公式进行解答即可. (1) 解:解:原式 (2) 原式 . 【点睛】本题考查因式分解,解题关键是掌握因式分解的方法与步骤. 20、x=2. 【分析】先去分母,再解一元一次方程得到方程的解,再将解代入最简公分母检验即可. 【详解】, (x-2)+(x+2)=4, 2x=4, x=2, 经检验,x=2是原分式方程的解. 【点睛】此 【解析】x=2. 【分析】先去分母,再解一元一次方程得到方程的解,再将解代入最简公分母检验即可. 【详解】, (x-2)+(x+2)=4, 2x=4, x=2, 经检验,x=2是原分式方程的解. 【点睛】此题考查解分式方程,需将分式方程先去分母化为整式方程,解整式方程得解后代入最简公分母中,值为0时原分式方程无解,值不为0时,此解是原分式方程的解. 21、(1)见解析;(2)见解析 【分析】(1)由平行得出,根据SAS即可证明; (2)利用全等三角形的性质即可证明; 【详解】证明:(1)∵, ∴, ∵, ∴, 即, 在和中, , ∴. (2)∵, ∴ 【解析】(1)见解析;(2)见解析 【分析】(1)由平行得出,根据SAS即可证明; (2)利用全等三角形的性质即可证明; 【详解】证明:(1)∵, ∴, ∵, ∴, 即, 在和中, , ∴. (2)∵, ∴, ∴. 【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用全等三角形的判定和性质定理进行证明推理. 22、(1)三角形的内角和等于;等式的性质 (2)124° (3)或 【分析】(1)根据三角形内角和定理、等式的性质直接得出. (2)根据探究得出的四边形的内角和是,已知,建立等式,利用平角的定义进行等量 【解析】(1)三角形的内角和等于;等式的性质 (2)124° (3)或 【分析】(1)根据三角形内角和定理、等式的性质直接得出. (2)根据探究得出的四边形的内角和是,已知,建立等式,利用平角的定义进行等量代换即可得出. (3)利用三角形内角和定理、平角的定义建立等式,等量代换推理得出. (1)解:如图①,连接,在和中,,(三角形的内角和等于).(等式的性质)..四边形的内角和是. (2)解:由(1)得,(已证),,(已知).          ①又,,(平角的定义),.,(等式的性质).          ②由①②得,,. (3)如图②,.,,,,,.,.如图③,.,,,.,,.. 【点睛】本题主要考查三角形内角和定理的理解与探索论证能力.涉及以下知识点:三角形三个内角和等于;平角等于,是角的两边成一条直线时所成的角;对顶角相等.灵活运用三角形内角和定理、平角的定义、已知信息建立等式,从而可以等量代换是解本题的关键. 23、(1)第一次每件的进价为50元 (2)两次的总利润为4000元 【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+25%)x,根据等量关系,列出分式方程,即可求解; (2)根据总利润=总售 【解析】(1)第一次每件的进价为50元 (2)两次的总利润为4000元 【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+25%)x,根据等量关系,列出分式方程,即可求解; (2)根据总利润=总售价-总成本,列出算式,即可求解. (1) 设第一次每件的进价为x元,则第二次进价为(1+50%)x, 根据题意得:, 解得:x=50, 经检验:x=50是方程的解,且符合题意, 答:第一次每件的进价为50元; (2) 解:(元), 答:两次的总利润为4000元. 【点睛】本题主要考查分式方程的实际应用,有理数四则运算的应用,找准等量关系,列出分式方程,是解题的关键. 24、(1),证明见解析; (2)①甲两次所加油的平均单价为;乙两次所加油的平均单价为;②乙两次加油的平均油价比较低 【分析】(1)根据图形,结合阴影总分的面积的表示方法的不同,即可求解; (2)①根据平 【解析】(1),证明见解析; (2)①甲两次所加油的平均单价为;乙两次所加油的平均单价为;②乙两次加油的平均油价比较低 【分析】(1)根据图形,结合阴影总分的面积的表示方法的不同,即可求解; (2)①根据平均油价=总价钱+总油量,进行求解即可;②结合①进行求解即可. 【详解】解:(1)猜想的结论为:. ∵. ∴. (2)①甲两次所加油的平均单价为; 乙两次所加油的平均单价为. ②∵,∵,,且. ∴,.∴,即. 所以,乙两次加油的平均油价比较低. 【点睛】本题主要考查整式的加减及完全平方公式,列代数式,理解清楚题意,找到相应的等量关系是解答的关键. 25、(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明; ( 【解析】(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明; (1) 解:①由图可知, ∵ ∴,即, ∴,, ∴; ②作交AB与点C,交AB与点F,如图, ∵,, ∴, 在和中, ∴, ∴,,, ∵, ∴, ∴, ∴,即, ∵, ∴, ∴, ∵, ∴, 即, (2) 解:,,理由如下: 假设DE交BC于点G, 有已知可知:,,,, ∴, ∵ ∴ ∵,且, ∴, 在和中, ∴, ∴,, ∵, ∴, ∴, 【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服