资源描述
2023黄冈市八年级上册期末数学试卷
一、选择题
1、下列是我们一生活中常见的安全标识,其中不是轴对称图形的是( )
A. B. C. D.
2、石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )
A.3.4×10-9 B.0.34×1010 C.3.4×10-10 D.3.4×10-11
3、下列运算正确的是( )
A. B. C. D.
4、要使分式有意义,则x的取值应满足( )
A. B. C. D.
5、下列各式从左边到右边的变形中,属于因式分解的是( )
A.a(x+y)=ax+ay B.10x-5=5x(2-)
C.y2-4y+4=(y-2)2 D.t2-16+3t=(t+4)(t-4)+3t
6、已知,则下列说法错误的是( )
A. B. C. D.
7、如图,已知,要得到,还需从下列条件中补选一个,则错误的选法是( )
A. B. C. D.
8、关于x的分式方程的解为正数,则m的取值范围是( )
A.m>2 B.m<2 C.m<2且m≠0 D.m≠0
9、如图,在中,是延长线上一点,,,则等于( )
A. B. C. D.
二、填空题
10、如图,两个正方形的边长分别为a、b,若,,则阴影部分的面积是( )
A.40 B. C.20 D.23
11、分式的值为0,则x=________.
12、点P(-2,4)关于x轴对称的点的坐标为________.
13、已知,则的值是______.
14、已知:,,,则的值=______.
15、如图,四边形ABCD中,,,E、F分别是AD、AB上的动点,当的周长最小时,的度数是______.
16、如图,将△ABC绕点A顺时针旋转角100°,得到△ADE,若点E恰好在CB的延长线上,则∠BED等于_______度.
17、若(2022-a)(2021-a)=2020,则(2022-a)2+(2021-a)2=____________.
18、如图,直线PQ经过Rt△ABC的直角顶点C,△ABC的边上有两个动点D、E,点D以1cm/s的速度从点A出发,沿AC→CB移动到点B,点E以3cm/s的速度从点B出发,沿BC→CA移动到点A,两动点中有一个点到达终点后另一个点继续移动到终点.过点D、E分别作DM⊥PQ,EN⊥PQ,垂足分别为点M、N,若AC=6cm,BC=8cm,设运动时间为t,则当t=__________ s时,以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.
三、解答题
19、因式分解:
(1)
(2)
20、解分式方程:
21、如图,点、、、在同一条直线上,,,.求证:
(1);
(2).
22、在学习完《6、5三角形内角和定理》,小芳和同学们作如下探究:
已知:在中,,分别是的边,上的点,点是边上的一个动点,令,.
(1)他们探究得到:四边形的内角和是.
理由如下:如图①,连接,
在和中,
,
( ).
( ).
.
即四边形的内角和是.
(2)如图①,点在线段上,且,求的度数.
(3)如果点运动到的延长线上,请在图②中补全图形,并直接写出,,之间的等量关系.
23、某商店用6000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了50%,同样用6000元购进的数量比第一次少了40件.
(1)求第一次每件的进价为多少元?
(2)若两次购进的玩具售价均为80元,且全部售完,求两次的总利润为多少元?
24、(1)如图,整个图形是边长为的正方形,其中阴影部分是边长为的正方形,请根据图形,猜想与存在的等量关系,并证明你的猜想;
(2)根据(1)中得出的结论,解决下列问题:
甲、乙两位司机在同一加油站两次加油,两次油价有变化,两位司机采用不同的加油方式.其中,甲每次都加40升油,乙每次加油费都为300元.设两次加油时,油价分别为m元/升,n元/升(,,且).
①求甲、乙两次所购的油的平均单价各是多少?
②通过计算说明,甲、乙哪一个两次加油的平均油价比较低?
25、已知:,.
(1)当a,b满足时,连接AB,如图1.
①求:的值.
②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:.
(2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论.
一、选择题
1、B
【解析】B
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【详解】解:A、B、D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;
故选:C.
【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、C
【解析】C
【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.
【详解】解:
故选C.
【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.
3、D
【解析】D
【分析】直接利用幂的乘方和积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,故此选项正确;
故选:D.
【点睛】此题主要考查了幂的乘方和积的乘方运算法则、同底数幂的乘除法,正确掌握相关运算法则是解题关键.
4、B
【解析】B
【分析】利用分式有意义则分母不等于零,即可得出答案.
【详解】解:要使分式有意义,则x+2≠0,
解得:x≠-1、
故选:B.
【点睛】此题主要考查了分式有意义的条件,正确掌握分式有意义的条件是解题关键.
5、C
【解析】C
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.
【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;
B、右边不是整式积的形式(含有分式),不是因式分解,故此选项不符合题意;
C、符合因式分解的定义,是因式分解,故此选项符合题意;
D、右边不是整式积的形式,不是因式分解,故此选项不符合题意;
故选:C.
【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.
6、B
【解析】B
【分析】设,,代入各项验证即可.
【详解】解:∵,
∴设,,
A.,说法正确,不符合题意;
B.,∴,该项说法错误,符合题意;
C.,说法正确,不符合题意;
D.,,故,说法正确,不符合题意;
故选:B.
【点睛】本题考查判断分式的变形,掌握“见比设参”的原则是解题的关键.
7、B
【解析】B
【分析】利用全等三角形的判定方法依次分析即可.
【详解】A.AB=AC,∠1=∠2,AD=AD,利用SAS可判定△ABD≌△ACD,故A不符合题意
B.DB=DC,∠1=∠2,AD=AD,利用SSA不可判定△ABD≌△ACD,故B符合题意;
C.∠ADB=∠ADC,∠1=∠2,AD=AD,利用ASA可判定△ABD≌△ACD,故C不符合题意;
D.∠B=∠C,∠1=∠2,AD=AD,利用AAS可判定△ABD≌△ACD,故D不符合题意.
故选:B.
【点睛】本题考查全等三角形的判定.熟练掌握SSS、SAS、ASA、AAS是本题解题的关键.
8、C
【解析】C
【分析】根据分式方程的解为正数和分式方程有意义,得出x的取值范围,再解分式方程,解得,代入x的取值范围即可算出m的取值范围.
【详解】解:∵关于x的分式方程的解为正数,
∴且
∴且
去分母得:
化简得:
∴且
解得:且,
故选:C.
【点睛】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键.
9、A
【解析】A
【分析】根据三角形外角性质:三角形的一个外角等于和它不相邻的两个内角的和,经计算即可得到答案.
【详解】解:∵是延长线上一点,
∴,
∵,,
∴
故选:A.
【点睛】本题考查了三角形外角的知识;解题的关键是熟练掌握三角形外角的性质,从而完成求解.
二、填空题
10、C
【解析】C
【分析】根据阴影部分面积等于2个正方形面积减去2个空白部分的三角形面积,进而根据完全平方公式的变形求解即可
【详解】解:阴影部分面积等于
∵,,
∴阴影部分面积等于
故答案为:C
【点睛】本题考查了完全平方公式变形求图形面积,掌握完全平方公式是解题的关键.
11、1
【分析】根据分式值为0以及分式有意义的条件求解即可.
【详解】解:分式的值为0,
,且
故答案为:
【点睛】本题考查了分式的值为0的条件,掌握分式的值为0即分子为0,分母不为0是解题的关键.
12、
【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解.
【详解】解:点P(-2,4)关于x轴对称的点的坐标为,
故答案为:.
【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键.
13、##-0.25
【分析】先把所给等式的左边通分,再相减,可得,再根据等式性质可得,即可得出,再代入,化简即可求出结果.
【详解】解:∵,
∴,
∴,
∴,
∴.
故答案是:.
【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出,是解题关键.
14、
【分析】逆用同底数幂的乘除法,逆用幂的乘方,进而即可求解.
【详解】解:,,,
故答案为:
【点睛】本题考查了同底数幂的乘除法,幂的乘方,掌握同底数幂的乘除法法则,幂的乘方法则是解题的关键.
15、40°##40度
【分析】要使△CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用△CMN内角和即可得出答案.
【详解】作C关于BA
【解析】40°##40度
【分析】要使△CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用△CMN内角和即可得出答案.
【详解】作C关于BA和AD的对称点N,M,连接MN,交AD于E1,交AB于F1,则MN即为△CEF的周长最小值.
∵,,
∴∠DCB=110°,
由对称可得:CF1=F1N,E1C=E1M,
∴,
∵,
∴,
∴,
即当的周长最小时,的度数是40°,
故答案为:40°.
【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质、等边对等角等知识,根据已知得出的周长最小时,E,F的位置是解题关键.
16、80
【分析】证明∠ABE+∠ADE=180°,推出∠BAD+∠BED=180°即可解决问题.
【详解】解:∵将△ABC绕点A顺时针旋转角100°,得到△ADE,
∴△ABC≌△ADE,∠BAD=1
【解析】80
【分析】证明∠ABE+∠ADE=180°,推出∠BAD+∠BED=180°即可解决问题.
【详解】解:∵将△ABC绕点A顺时针旋转角100°,得到△ADE,
∴△ABC≌△ADE,∠BAD=100°
∴∠ABC=∠ADE,
又∠ABC+∠ABE=180°,
∴∠ABE+∠ADE=180°,
∴∠BAD+∠BED=360°-(∠ABE+∠ADE)=180°,
∵∠BAD=100°,
∴∠BED=180°- 100°=80°.
故答案为:80.
【点睛】本题考查旋转的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
17、4041
【分析】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2020,进而根据完全平方公式变形求解即可.
【详解】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2
【解析】4041
【分析】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2020,进而根据完全平方公式变形求解即可.
【详解】设x=2022-a,y=a-2021,则有x+y=1,xy=﹣2020,
原式=x2+y2=(x+y)2-2xy=4041
故答案为:4041
【点睛】本题考查了完全平方公式变形求值,掌握完全平方公式以及换元思想是解题的关键.
18、1或或12
【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在A
【解析】1或或12
【分析】由以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.可知CE=CD,而CE,CD的表示由E,D的位置决定,故需要对E,D的位置分当E在BC上,D在AC上时或当E在AC上,D在AC上时,或当E到达A,D在BC上时,分别讨论.
【详解】解:当E在BC上,D在AC上,即0<t≤时,
CE=(8-3t)cm,CD=(6-t)cm,
∵以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.
∴CD=CE,
∴8-3t=6-t,
∴t=1s,
当E在AC上,D在AC上,即<t<时,
CE=(3t-8)cm,CD=(6-t)cm,
∴3t-8=6-t,
∴t=s,
当E到达A,D在BC上,即≤t≤14时,
CE=6cm,CD=(t-6)cm,
∴6=t-6,
∴t=12s,
故答案为:1或或11、
【点睛】本题主要考查了三角形全等的性质,解决问题的关键是对动点所在的位置进行分类,分别表示出每种情况下CD和CE的长.
三、解答题
19、(1)
(2)
【分析】(1)先提取公因式,再运用完全平方公式进行解答即可;
(2)先运用平方差公式,再运用完全平方公式进行解答即可.
(1)
解:解:原式
(2)
原式
.
【点睛】本题考
【解析】(1)
(2)
【分析】(1)先提取公因式,再运用完全平方公式进行解答即可;
(2)先运用平方差公式,再运用完全平方公式进行解答即可.
(1)
解:解:原式
(2)
原式
.
【点睛】本题考查因式分解,解题关键是掌握因式分解的方法与步骤.
20、x=2.
【分析】先去分母,再解一元一次方程得到方程的解,再将解代入最简公分母检验即可.
【详解】,
(x-2)+(x+2)=4,
2x=4,
x=2,
经检验,x=2是原分式方程的解.
【点睛】此
【解析】x=2.
【分析】先去分母,再解一元一次方程得到方程的解,再将解代入最简公分母检验即可.
【详解】,
(x-2)+(x+2)=4,
2x=4,
x=2,
经检验,x=2是原分式方程的解.
【点睛】此题考查解分式方程,需将分式方程先去分母化为整式方程,解整式方程得解后代入最简公分母中,值为0时原分式方程无解,值不为0时,此解是原分式方程的解.
21、(1)见解析;(2)见解析
【分析】(1)由平行得出,根据SAS即可证明;
(2)利用全等三角形的性质即可证明;
【详解】证明:(1)∵,
∴,
∵,
∴,
即,
在和中,
,
∴.
(2)∵,
∴
【解析】(1)见解析;(2)见解析
【分析】(1)由平行得出,根据SAS即可证明;
(2)利用全等三角形的性质即可证明;
【详解】证明:(1)∵,
∴,
∵,
∴,
即,
在和中,
,
∴.
(2)∵,
∴,
∴.
【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用全等三角形的判定和性质定理进行证明推理.
22、(1)三角形的内角和等于;等式的性质
(2)124°
(3)或
【分析】(1)根据三角形内角和定理、等式的性质直接得出.
(2)根据探究得出的四边形的内角和是,已知,建立等式,利用平角的定义进行等量
【解析】(1)三角形的内角和等于;等式的性质
(2)124°
(3)或
【分析】(1)根据三角形内角和定理、等式的性质直接得出.
(2)根据探究得出的四边形的内角和是,已知,建立等式,利用平角的定义进行等量代换即可得出.
(3)利用三角形内角和定理、平角的定义建立等式,等量代换推理得出.
(1)解:如图①,连接,在和中,,(三角形的内角和等于).(等式的性质)..四边形的内角和是.
(2)解:由(1)得,(已证),,(已知). ①又,,(平角的定义),.,(等式的性质). ②由①②得,,.
(3)如图②,.,,,,,.,.如图③,.,,,.,,..
【点睛】本题主要考查三角形内角和定理的理解与探索论证能力.涉及以下知识点:三角形三个内角和等于;平角等于,是角的两边成一条直线时所成的角;对顶角相等.灵活运用三角形内角和定理、平角的定义、已知信息建立等式,从而可以等量代换是解本题的关键.
23、(1)第一次每件的进价为50元
(2)两次的总利润为4000元
【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+25%)x,根据等量关系,列出分式方程,即可求解;
(2)根据总利润=总售
【解析】(1)第一次每件的进价为50元
(2)两次的总利润为4000元
【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+25%)x,根据等量关系,列出分式方程,即可求解;
(2)根据总利润=总售价-总成本,列出算式,即可求解.
(1)
设第一次每件的进价为x元,则第二次进价为(1+50%)x,
根据题意得:,
解得:x=50,
经检验:x=50是方程的解,且符合题意,
答:第一次每件的进价为50元;
(2)
解:(元),
答:两次的总利润为4000元.
【点睛】本题主要考查分式方程的实际应用,有理数四则运算的应用,找准等量关系,列出分式方程,是解题的关键.
24、(1),证明见解析;
(2)①甲两次所加油的平均单价为;乙两次所加油的平均单价为;②乙两次加油的平均油价比较低
【分析】(1)根据图形,结合阴影总分的面积的表示方法的不同,即可求解;
(2)①根据平
【解析】(1),证明见解析;
(2)①甲两次所加油的平均单价为;乙两次所加油的平均单价为;②乙两次加油的平均油价比较低
【分析】(1)根据图形,结合阴影总分的面积的表示方法的不同,即可求解;
(2)①根据平均油价=总价钱+总油量,进行求解即可;②结合①进行求解即可.
【详解】解:(1)猜想的结论为:.
∵.
∴.
(2)①甲两次所加油的平均单价为;
乙两次所加油的平均单价为.
②∵,∵,,且.
∴,.∴,即.
所以,乙两次加油的平均油价比较低.
【点睛】本题主要考查整式的加减及完全平方公式,列代数式,理解清楚题意,找到相应的等量关系是解答的关键.
25、(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(
【解析】(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(1)
解:①由图可知,
∵
∴,即,
∴,,
∴;
②作交AB与点C,交AB与点F,如图,
∵,,
∴,
在和中,
∴,
∴,,,
∵,
∴,
∴,
∴,即,
∵,
∴,
∴,
∵,
∴,
即,
(2)
解:,,理由如下:
假设DE交BC于点G,
有已知可知:,,,,
∴,
∵
∴
∵,且,
∴,
在和中,
∴,
∴,,
∵,
∴,
∴,
【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.
展开阅读全文