1、(完整版)人教版七年级数学下册期末压轴难题试卷及答案一、选择题1一个有理数的平方等于,则这个数是()AB或CD2下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( )ABCD3在平面直角坐标系中,点位于( )A第一象限B第二象限C第三象限D第四象限4下列五个命题:如果两个数的绝对值相等,那么这两个数的平方相等;一个三角形被截成两个三角形,每个三角形的内角和是90度;在同一平面内,垂直于同一条直线的两条直线互相平行;两个无理数的和一定是无理数;坐标平面内的点与有序数对是一一对应的其中真命题的个数是( )A2个B3个C4个D5个5为增强学生体质,感受中国的传统文化,学校将国家级非物
2、质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知ABCD,EAB80,则E的度数是( )A30B40C60D706有个数值转换器,原理如图所示,当输入为27时,输出的值是( )A3BCD327如图,直线ab,直角三角板ABC的直角顶点C在直线b上,若154,则2的度数为( )A36B44C46D548如图,在平面直角坐标系上有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至依照此规律跳动下去,点第124次跳动至的坐标为( )ABCD二、填空题9若,则_.10点A(2,4)关于x轴对称的点的坐标是_11如图,ABC中BAC60,将ACD沿AD
3、折叠,使得点C落在AB上的点C处,连接CD与CC,ACB的角平分线交AD于点E;如果BCDC;那么下列结论:12;AD垂直平分CC;B3BCC;DCEC;其中正确的是:_;(只填写序号)12如图,直线ab,直角三角形的直角顶点在直线b上,已知1=48,则2的度数是_度13把一张长方形纸条按如图所示折叠后,若,则_;14当时,我们把称为x为“和1负倒数”如:1的“和1负倒数”为;-3的“和1负倒数”为若,是的“和1负倒数”,是的“和1负倒数”依次类推,则_; _15在平面直角坐标系中,点P的坐标为,则点P在第_象限16在平面直角坐标系中,已知点,且,下列结论:轴,将点A先向右平移5个单位,再向下
4、平移个单位可得到点;若点在直线上,则点的横坐标为3;三角形的面积为,其中正确的结论是_(填序号)三、解答题17计算:(1);(2)18求下列各式中的 (1) (2)19请补全推理依据:如图,已知:,求证:证明:(已知)( )( )又(已知)( )( )( )20如图,在平面直角坐标系中,点、在轴上,(1)写出点、的坐标(2)如图,过点作交轴于点,求的大小(3)如图,在图中,作、分别平分、,求的度数21已知:a是的小数部分,b是的小数部分(1)求a、b的值;(2)求4a+4b+5的平方根二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是_;(2)若沿着大正方
5、形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?二十三、解答题23如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值24如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,
6、请说理由25解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)如图3,在中,、分别平分和,请直接写出和的关系;如图4,(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,求和的度数26已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是
7、(3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、选择题1B解析:B【分析】根据一个数a,如果,那么a就叫做b的平方根求解即可【详解】解:,36的平方根为6或-6,故选B【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义2B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本图案”经过平移得到故选:B【点睛】本题考查解析:B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本
8、图案”经过平移得到故选:B【点睛】本题考查平移的概念,考查观察能力3B【分析】根据直角坐标系的性质分析,即可得到答案【详解】点位于第二象限故选:B【点睛】本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解4B【分析】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可【详解】解:如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;两个无理数的和不一定是无理数,是假命题;坐标平面内的点与有序数对是一一
9、对应的,是真命题;其中真命题是,个数是3故选:【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键5A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得【详解】解:如图,过点作,故选:A【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键6B【分析】利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值【详解】根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得,为无理数.符
10、合题意,即输出的y值为.故答案选:B.【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.7A【分析】根据直角三角形可求出3的度数,再根据平行线的性质2=3即可得出答案【详解】解:如图所示:直角三角形ABC,C=90,1=54,3=90-1=36,ab,2=3=36故选:A【点睛】本题考查了平行线的性质,熟练掌握平行线的性质,求出3的度数是解题的关键8A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标解析:A【分析】根据图形观察发现
11、,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),第124次跳动至点的坐标是(63,62)故选:A【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键二、填空题91【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b
12、= -2,所以3+(-2)=1故答案为1解析:1【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解【详解】解:根据题意得,a-3=0,b+2=0,解得a=3,b= -2,所以3+(-2)=1故答案为1【点睛】本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键10(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛解析:(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相
13、反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律11【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC解析:【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC=D,AD垂直平分CC;,都正确;BD, DC=D,BD= DC,3=B,4=5
14、,3=4+5=25即B2BC;错误;根据折叠的性质,得ACD=AD=B+3=23,ACB的角平分线交AD于点E,2(6+5)=2B, D EC正确;故答案为:.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.1242【分析】利用平行线的性质,平角的性质解决问题即可【详解】解:4=90,1=48,3=90-1=42,ab,2=3=42,故答案为:42【点解析:42【分析】利用平行线的性质,平角的性质解决问题即可【详解】解:4=90,1=48,3=90-1=42,ab,2=3=42,故答案为:42【点睛】本题考查了平行线的性质,平角的
15、性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻
16、折不变性的性质是解答此题的关键14【分析】根据“和1负倒数”的定义分别计算、,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答【详解】解:由“和1负倒数”定义和可得:,由此可得出从开解析:【分析】根据“和1负倒数”的定义分别计算、,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答【详解】解:由“和1负倒数”定义和可得:,由此可得出从开始每3个数为一周期循环,20213=6732,又= =1, =3,故答案为:;3【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键15三【分析】先判断出点P的纵坐标的符号,再根据各
17、象限内点的符号特征判断点P所在象限即可【详解】解:a2为非负数,-a2-1为负数,点P的符号为(-,-)点P在第三象限故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可【详解】解:a2为非负数,-a2-1为负数,点P的符号为(-,-)点P在第三象限故答案为:三【点睛】本题考查了点的坐标解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数牢记点在各象限内坐标的符号特征是正确解答此类题目的关键四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)16【分析】两点纵坐标相同,得到 A
18、B /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断解析:【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断【详解】解:A(-2,4),B(3,4),它们的纵坐标相同,AB /x轴,故正确;将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m),故错误;B(3,4),C(3,m),它们的横坐标相同,BC x轴,点 D 在直线BC上,点 D的横坐标为 3,故正确;点A(-2,
19、4),B(3, 4),C(3,m),且m4,AB =5,C 点到 AB 的距离为(4-m),三角形 ABC 的面积为,故正确;故答案为:【点睛】本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键三、解答题17(1)-1;(2)【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可【详解】解:(1)原式(2)原式【点解析:(1)-1;(2)【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可【详解】解:(1)原式(2
20、)原式【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键18(1)或;(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),解析:(1)或;(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),【点睛】本题考查了平方根与立方根,理解相关定义是解决本题的关键19同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平
21、行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:12180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:12180(已知),ADEF(同旁内角互补,两直线平行),3D(两直线平行,同位角相等),又3A(已知),DA(等量代换),ABCD(内错角相等,两直线平行),BC(两直线平行,内错角相等)故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【点睛】本题主要考查了平行线的判定
22、与性质,熟记平行线的判定定理与性质定理是解本题的关键20(1),;(2)90;(3)45【分析】(1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1),;(2)90;(3)45【分析】(1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则;(3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, 【详解】解:(1)依题意得:,;(2),;(3),分别平分,过点作,则,【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标
23、是解题的关键,(3)作出平行线是解题的关键21(1)a3,b4;(2)3【分析】(1)根据34,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可【详解】解:(1)34,118+12,解析:(1)a3,b4;(2)3【分析】(1)根据34,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可【详解】解:(1)34,118+12,485,a是的小数部分,b是的小数部分,a8+113,b844(2),4a+4b+5的平方根为:3【点睛】本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键二十二、解答题22(1);(2)不
24、能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.【详解】(1)用两个面积为的小正方形拼成一个大的正方形,大正方形的面积为400,大正方形的边长为故答案为:20cm;(2)设长方形纸片的长为,宽为,解得:,答:不能剪出
25、长宽之比为5:4,且面积为的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.二十三、解答题23(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM解析:(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线
26、FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,故的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键24(1)
27、ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图3,过点E作ESCD,设直线DF和直线
28、BP相交于点G,根据平行线的性质和角平分线定义可求PBM的度数【详解】解:(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质25(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】
29、(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)根据角平分线的定义及三角形内角和定理即可得出结论;连结BE,由(2)的结论及四边形内角和为360即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论【详解】(1)理由如下:如图1,;(2)理由如下:在中,在中,;(3),、分别平分和,故答案为:连结,故答案为:;(4)由(1)知,;【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键26(1)70;F=BED,证明见解析;(2)2F+BED=360;
30、(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+A解析:(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+ABF,利用角平分线的定义得到ABE+CDE=2ABF+2CDF=2(ABF+CDF),求得ABF+CDF=70,即可求解;分别过E、F作EN/AB,FM/AB,利用平行线的判定和性质得到BED=ABE+CDE,利用角平分线的定义得到BED=2(ABF+CDF),同理得到F=ABF+CDF,即可求解;(2)根据ABE的平分线与
31、CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合的结论即可说明BED与BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得【详解】(1)过F作FG/AB,如图:ABCD,FGAB,CDFG,ABF=BFG,CDF=DFG,DFB=DFG+BFG=CDF+ABF,BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,ABE+CDE=2ABF+2CDF=2(ABF+CDF)=60+80=140,ABF+CDF=70,DFB=ABF+CDF=70,
32、故答案为:70;F=BED, 理由是:分别过E、F作EN/AB,FM/AB,EN/AB,BEN=ABE,DEN=CDE,BED=ABE+CDE,DF、BF分别是CDE的角平分线与ABE的角平分线,ABE=2ABF,CDE=2CDF,即BED=2(ABF+CDF);同理,由FM/AB,可得F=ABF+CDF,F=BED;(3)2F+BED=360如图,过点E作EGAB,则BEG+ABE=180,ABCD,EGAB,CDEG,DEG+CDE=180,BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,BED=360-2(ABF+CDF),由得:BFD=ABF+CDF,BED=360-2BFD,即2F+BED=360;(3),F=,解得:,如图,CDE 为锐角,DF是CDE的角平分线,CDH=DHB,FDHB,即,故答案为:【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解