资源描述
人教版五年级上册数学应用题附答案
1.实验小学图书室童话书和故事书各15本,童话书每本16.8元,故事书每本13.2元。购进这些书共需要多少钱?
2.五(2)班48名师生照相合影。合影价格表定价如下:30元(含5张相片),加印一张2.5元。每人一张照片,一共需要付多少钱?
3.甲、乙两地相距4.2km,赵叔叔有急事需从乙地赶往甲地,他选择坐出租车,需要付多少元车费?
4.包子铺的早餐有三文治、包子、奶茶、煎鸡蛋和粥等。
(1)妈妈买了2个三文治和4个煎鸡蛋,共需要多少钱?
(2)请你为自己选一份健康、科学的早餐,并计算一共需要多少钱。
先在下面编一道题目:
再在下面解答:
5.某市自来水公司为鼓励节约用水,采取按月分段计费的方式收取水费。12吨以内的每吨2.5元;超过12吨的部分,每吨3.8元。
(1)小云家上个月的用水量为11吨,应缴水费多少元?
(2)小可家上个月的用水量为18吨,应缴水费多少元?
6.武汉市的居民用水实行阶梯式计价,家庭成员不足5人的按下表计算:
一档
0—25吨(含25吨)
每吨2.32元
二档
25—33吨(不含25吨)
每吨3.08元
三档
超过33吨(不含33吨)
每吨3.84元
亮亮一家三口上个月用水30吨,需要交多少水费?
7.面粉每千克5.5元,大米每千克6.4元,买面粉和大米各15千克,支付200元,应找回多少元?
8.某市出租车收费标准如下,李老师乘出租车行驶10.4千米,他应付多少元?
路程
标准
2千米以内
8元
超过2千米
每千米1.5元(不足1千米的按1千米计算)
9.
(1)普通冰箱一天的电费是多少?
(2)节能冰箱一天的电费是多少?
10.非洲鸵鸟:我们非洲鸵鸟是世界上最大的一种鸟类,我的身高是你的2.1倍。
帝企鹅:我们帝企鹅是企鹅家族中个体最大的,我的身高是1.05米。
这只非洲鸵鸟的身高大约是多少米?(得数保留两位小数)
11.8辆汽车4小时运货95吨,平均每辆汽车每小时运货多少吨?(得数保留两位小数)
12.妈妈到水果店买水果,买香蕉用了15.8元,比2千克苹果多花了2.4元,每千克苹果多少钱?
13.一件羽绒服的价格是2899元,比一件衬衣价格的5倍少101元,这件衬衣的价格是多少元?(用方程解)
14.张大叔养白兔和黑兔,白兔的只数是黑兔的3倍。______________,白兔和黑兔各有多少只?
(选择一个你喜欢的条件,将序号填在横线上,再解答)
A.白兔和黑兔一共180只
B.白兔比黑免多180只
15.山南中央公园占地约75公顷,其中水域面积大约是景观绿化面积的1.5倍。中央公园的水域面积和景观绿化面积大约各是多少公顷?(列方程解答)
16.有甲乙两辆汽车同时从相距525km的两个城市相对开出。甲车的速度是乙车的1.5倍,经过5时相遇。甲乙两车每时分别行多少km?(用方程解答)
17.请问:今年大头儿子几岁?(用方程解答)
18.一条公路长720米,甲、乙两支施工队同时从公路的两端往中间铺柏油。甲队的施工速度是乙队的1.25倍,4天后这条公路全部铺完。甲、乙两队每天分别铺柏油路多少米?(用方程解答)
19.张明和李军家相距3千米,他们两人步行同时出发去游泳馆游泳,相向而行,20分钟后两人在游泳馆门口相遇。张明每分钟走100米,李军每分钟走多少米?(列方程解答)
20.甲车和乙车从相距的两座城市同时出发,相向而行,经过4.2小时相遇。已知乙车每小时行驶比甲车快。甲车每小时行多少千米?(列方程解答)
21.奇奇带20元钱去买文具,每张彩纸0.4元,每支铅笔1.2元。奇奇买了5支铅笔,剩下的钱买彩纸,还可以买几张?
22.下表是中国银行2021年12月13日的外汇牌价。
1美元兑换人民币6.36元 1欧元兑换人民币7.18元1日元兑换人民币0.056元 1韩元兑换人民币0.0054元
(1)2.5欧元可以兑换多少人民币?
(2)一个玩具标价100元人民币,相当于多少日元?(结果保留两位小数)
(3)同一块手表在美国标价500美元,在韩国标价58万韩币。哪儿的标价低?
23.王阿姨想给长方形客厅重新铺正方形地砖,客厅尺寸如下。现在要选用如下图中的地砖铺面,且不切割,正好用整块数。选用哪种规格的地砖比较合适?一共需要多少块?
24.50千克油菜籽可以榨油17千克,每千克油菜籽可以榨油多少千克?
25.李老师租了一台“充电宝”,当天忘记归还,共使用了26.9小时,他将支付多少钱?
租金说明
①每0.5小时收费1.5元,不足0.5小时按0.5小时计费;
②满24小时收费合计20元,24小时后按时计费。
26.一辆汽车0.4小时行驶25千米,这辆汽车每小时行驶多少千米?行驶1千米,这辆汽车需要多少小时?
27.为了鼓励节约用电,某市实行“阶梯电价”,收费标准如表所示:
月用电量(千瓦时)
100及以下
100~220
220及以上
每千瓦时电费(元)
0.42
0.60
0.85
小明家十月份共付电费70.8元,他们家十月用电多少千瓦时?
28.甲乙两车同时从相距270千米的两地相对开出,经过2.5小时相遇,甲车每小时行52千米,乙车每小时行多少千米?
29.聪聪的爷爷买了一箱苹果和一把香蕉,共花了189.3元。这把香蕉重多少千克?
30.妈妈去超市购物,她买了苹果和香蕉各4千克,共花了59.2元。已知每千克苹果11.2元,那么每千克香蕉多少元?
31.少先队员参加植树活动,五年级去的人数是四年级的1.2倍,五年级去的人数比四年级多20人。原来两个年级各去了多少人?(列方程解答)
32.如下图,平行四边形的面积是45平方厘米,求阴影部分的面积。(单位:厘米)
33.李大爷有一块菜地(如下图),有一条小河穿过这块菜地。若每平方米菜地一年收入2.5元,那么李大爷的这块菜地每年可给家里带来多少收入?
34.王大伯利用一面墙围成一个鸡舍(如图),已知所用篱笆的全长是11.5米,请你帮王大伯算出这个鸡舍的面积是多少平方米。
35.下面是一块荒地平面图.
(1)这块荒地如果种花椒,大约可以种多少株?如果种桑树呢?
(2)如果每株桑树上的桑叶养的蚕可卖3.5元,每株花椒树上的花椒可卖15元,你觉得种什么树比较划算?算算看,将过程写在下面.
36.两个正方形相拼,求阴影部分的面积.
37.一块梯形地上底长220米,下底长340米,高是57.5米,共收油籽3542千克.平均每公顷产油籽多少千克?
38.一块梯形地的面积是450平方米,它的下底是40米,高15米。它的上底是多少米?(只列式不解答)
39.—间教室长8.8米,宽5.9米,现要铺上边长为8分米的正方形地砖,100块够吗?
40.把一个直角梯形的上底延长3cm后就成为了一个边长8cm的正方形,原来梯形的面积是( )平方厘米。画出示意图,并写出你的思考过程。
41.上个月小红爸爸的工资比妈妈的工资多2800元,爸爸的工资是妈妈的1.5倍,上个月爸爸、妈妈的工资各是多少元?(先画线段图,再列方程解答)
画线段图:
42.笼子里有白兔、灰兔若干只。白兔的只数是灰兔的3倍,灰兔比白兔少8只,白兔、灰兔各几只?
43.桌子和椅子的单价各是多少元?(列方程解答)
44.客车和货车从相距720千米的两地同时出发,相向而行,6小时后相遇。客车每时比货车每时多行8千米,货车每时行多少千米?(用方程解决)
45.两工程队同时开凿一条1377米长的隧道。各从一端相向施工,甲队的开凿速度是乙队的1.25倍,45天后完成施工。甲、乙两队每天分别开凿多少米?
46.同学们去参观历史博物馆,四年级和五年级共去了480人,其中五年级去的人数是四年级的3倍。四年级的参观人数是多少?
47.有甲乙两辆汽车同时从相距525km的两个城市相对开出。甲车的速度是乙车的1.5倍,经过5时相遇。甲乙两车每时分别行多少km?(用方程解答)
48.实验小学四、五年级喜欢足球的学生数共360人,五年级喜欢足球的学生数是四年级喜欢足球的学生数的4倍多15人,两个年级喜欢足球的学生各多少人?(用方程解答)
49.一条公路长720米,甲、乙两支施工队同时从公路的两端往中间铺柏油。甲队的施工速度是乙队的1.25倍,4天后这条公路全部铺完。甲、乙两队每天分别铺柏油路多少米?(用方程解答)
50.下面正方形的边长是10cm,正方形一个角的顶点在长方形一条边的中点,求下图中阴影部分的面积。
51.妈妈到商业广场第11层去做美容,由于电梯维修,只能走楼梯,如果妈妈从第一层走到第三层需要30秒,她用同样的速度从第三层继续往上走到第11层,还需要走多少分钟?
52.某复印店对于用A4纸复印的收费标准如下表。
项目
收费标准
普通A4纸复印
20张以内(含20张),0.5元/张
超过20张的部分,0.4元/张
彩色A4纸复印
0.8元/张
兰兰要复印一份资料,需要用48张普通A4纸,她复印这份资料应付多少钱?
53.一套《百科知识》售价23.8元,共4本。聪聪攒够钱去书店买书,碰上促销减价活动,节省的钱刚好可以再买一本单价3.2元的笔记本。这套丛书现在每本多少钱?
54.乐乐将瑞安出租车收费标准制作成如下表格(不足1千米按1千米计算)。
行驶的里程/千米
l
2
3
4
5
…
出租车费/元
8
10.5
13
15.5
…
乐乐家到学校的距离为6.5千米,他从家打车去学校需要付多少钱?
55.五一班45人照合影,每人1张照片,一共需要多少钱?
56.某自来水公司为鼓励节约用水,采取分段计费的方法收取水费,每月用水12吨及以内的,每吨2.5元,超过12吨的部分,每吨3.8元.张老师家上个月的用水量为15吨,应缴水费多少元钱?
57.(1)随着电动车的普及,充电问题日益突出,某大学为解决校园内充电难、乱停乱放问题,决定在校园安装10个充电区,每个充电区安装的长度都是45米,每隔0.9米安放一个充电桩(两端都安)。每个充电区要安装多少个充电桩?
(2)一般电动车每小时充电用电量是0.14度电,9小时左右充满。如果每度电收费1.6元,充5小时需要多少钱?
58.王阿姨家2020年8月份用电量为210度,根据下面的资料计算王阿姨家8月份应缴电费多少钱?
按省物价局印发的《河北省居民生活用电试行阶梯电价实施方案》的通知要求,阶梯电价自2012年7月1日执行。
第一档:居民户月用电量在180度及以内,维持现行电价水平。其中:不满1千伏用户电价每度0.52元(居民用户电压一般为220伏)。
第二档:居民户月用电量在181度~280度,在第一档电价基础上每度提高0.05元。
第三档:居民户月用电量在281度及以上,在第一档电价基础上每度提高0.30元。
59.电力是重要的资源,今年发生了席卷世界的用电紧张情况,我国至少已有16个省份出台了力度不等的限电措施。为了节约用电,缓解电力供应紧张,某省公布了居民用电阶梯电价听证方案:
第一档电量
第二档电量
第三档电量
月用电量210千瓦时及210千瓦时以下,每千瓦时价格0.52元
月用电量超过210千瓦时但不超过350千瓦时时,超过部分,每千瓦时比第一档提价0.05元
月用电量超过350千瓦时时,超过部分每千瓦时比第一档提价0.30元
(1)明明家6月份的用电量为230千瓦时,应缴电费多少元?
(2)笑笑家8月份的用电量为375千瓦时,应缴电费多少元?
60.某市为鼓励居民节约用电,规定收费标准如下:每户每月用电量1~240千瓦时,每千瓦时0.49元;超过240千瓦时、不超过400千瓦时的部分,每千瓦时0.53元;超过400千瓦时的部分,每千瓦时0.79元。
(1)小明家上月用电量为250千瓦时,电费是多少?
(2)小丽家上月用电量为420千瓦时,电费是多少?
61.36名学生在操场上做游戏.大家围成一个正方形,每边人数都相等.四个顶点都有人,每边各有几名学生?
62.学校举行书法作品展,决定在长是36米的文化长廊的两侧每隔3米挂一幅书法作品(两端不挂)。两侧一共要挂多少幅书法作品?
63.“植树问题”有两端植、一端植、两端都不植三种情况。画图并配上文字,说明三种情况间隔数与棵数之间的关系。
64.一根木头长12米,要把它锯成长度相等的6段,每锯一次需要7分钟,锯完一共需要多少分钟?
65.一条走廊长24米,每隔3米放一盆花,走廊两端都要放。一共要放多少盆花?
66.小亮爬楼梯,他从1楼到3楼用了48秒.用同样的速度,他从1楼到6楼要用多少秒?
67.一座桥长116米,在桥的两侧栏杆上各安装16块花纹图案,图案的长为2米,两头的图案离桥两端都是12米,且每相邻两块图案间的间隔都相等.问:相邻两块图案之间应间隔多少米?
68.将一根4米长的钢筋从一端开始,按每30厘米锯一大段,再按每20厘米锯一小段,这样交替锯下去,每锯一下用30秒,锯完一下休息2分钟。全部锯完需多长时间?
69.木工师傅要把一根长3.6米的木条锯成40厘米长的小木条,每锯一段用时2分钟,请你帮师傅算一算锯完这条木条共需要几分钟?
70.你知道郑州地铁是怎样制定票价的吗?
郑州地铁票价实行分段计价收费制,票价区间是2元~9元。第一个收费区间是起步价:票价2元,行驶里程在6千米以内(含6千米);第二个收费区间是:行驶里程在6~13千米之间,票价3元,是在起步价2元的基础上加1元;第三个收费区间是:行驶里程在13~21千米之间,再加1元;第四个收费区间是:行驶里程在21千米以上,每增加9千米加1元。
(1)上图中已经画出了部分收费区间的计价情况,请在图中画出第四个收费区间的计价情况。
(2)地铁1号线的五一公园站到市体育中心站,票价为5元,童童认为五一公园站到市体育中心站大约有19.5千米,她认为的对吗?通过分析说明你的结论。
【参考答案】
1.450元
【解析】
根据单价×数量=总价,分别求出童话书和故事书的总价,然后相加即可。
16.8×15+13.2×15
=(16.8+13.2)×15
=30×15
=450(元)
答:购进这些书共需要450元。
【点睛】
本题考查单价、数量和总价,明确它们之间的关系是解题的关键。
2.5元
【解析】
五(2)班48名师生照相合影,需要48张照片,减去5张还需加印43张,据此求出一共需要付多少钱即可。
(元)
答:一共需要付137.5元钱。
【点睛】
本题考查小数乘法,解答本题的关键是找到要加印的照片的张数。
3.6元
【解析】
首先根据题意,用赵叔叔到达甲地共行驶的路程减去2,求出比起步路程多行驶了2.2千米;然后根据总价单价数量,用2千米以上每千米收费乘1.2,求出2千米以上的路程一共收费的钱数是多少;最后用它加上2千米以内(包括2千米)的收费,求出他要付多少元即可。
4.2-2=2.2(千米)
2.2≈3
1.2×3+10
=3.6+10
=13.6(元)
答:他要付13.6元。
【点睛】
明确出租车收费的阶梯标准并能熟练掌握单价、总价、数量的关系是解决本题的关键。
4.(1)15元;(2)见详解
【解析】
(1)总价=单价×数量,用三文治的价格乘上三文治的数量再加上煎鸡蛋的单价乘煎鸡蛋的数量即可。
(2)选出一份健康、科学的早餐,按照总价=单价×数量计算即可。(答案不唯一)
(1)2×4.5+4×1.5
=9+6
=15(元)
答:妈妈买了2个三文治和4个煎鸡蛋,共需要15元。
(2)早餐买了4个包子和2个煎鸡蛋一共需要多少钱?(问题不唯一)
4×1.2+2×1.5
=4.8+3
=7.8(元)
答:早餐买了4个包子和2个煎鸡蛋一共需要7.8元。
【点睛】
熟练掌握小数乘法的计算是解题的关键。
5.(1)27.5元
(2)52.8元
【解析】
(1)在12吨以内的用水量,用吨数乘每吨水的单价即可;
(2)用12吨用水量乘12吨以内每吨水的单价,计算出12吨以内用水的价钱,超出12吨的用水量,用多出的吨数乘超出12吨后每吨水的单价,得出超出部分的价钱,两部分的费用加起来即可。
(1)11×2.5=27.5(元)
答:应缴水费27.5元。
(2)12×2.5+(18-12)×3.8
=30+6×3.8
=30+22.8
=52.8(元)
答:应缴水费52.8元。
【点睛】
此题的解题关键是采取分段计费的办法,计算出每一段的费用,再加起来即可。
6.4元
【解析】
用水30吨,没有超过33吨,先根据单价×数量=总价求出25吨以内的收费,再求出超出25吨以外的数量乘二档水费的单价,再相加即可。
25×2.32+(30-25)×3.08
=58+15.4
=73.4(元)
答:需要交73.4元的水费。
【点睛】
此题考查的是分段计费问题,明确题目中每一问所给数量与问题之间的联系,灵活选择正确的解题方法是解题关键。
7.5元
【解析】
根据单价×数量=总价,分别求出15千克面粉、大米的价钱,再相加,即是面粉和大米的总价;最后用支付的钱数减去花去的钱数,即可得出应找回的钱数。
5.5×15+6.4×15
=(5.5+6.4)×15
=11.9×15
=178.5(元)
200-178.5=21.5(元)
答:应找回21.5元。
【点睛】
掌握单价、数量、总价之间的关系是解题的关键。解题过程中可以运用乘法分配律a×c+b×c=(a+b)×c进行简便运算。
8.5元
【解析】
由题意,可把10.4千米看作11千米,先减去2千米,再乘1.5元,计算出属于第二个段位应付车费,列综合算式为(11-2)×1.5;最后再加上8元,就是一共应付的车费。
10.4-2=8.4(千米)
8.4≈9(千米)
9×1.5+8
=13.5+8
=21.5(元)
或10.4≈11(千米)
(11-2)×1.5+8
=9×1.5+8
=13.5+8
=21.5(元)
答:他应付21.5元。
【点睛】
一是要读懂收费标准,理解每一个段位里的计费方法;其次,要懂得把不足整数千米的距离记作整千米数,使其符合出租车计费方法。
9.(1)0.4元;
(2)0.11元
【解析】
(1)普通冰箱一天的电费=普通冰箱一天的耗电量×电费的单价;
(2)节能冰箱一天的电费=节能冰箱一天的耗电量×电费的单价;据此解答。
(1)0.8×0.5=0.4(元)
答:普通冰箱一天的电费是0.4元。
(2)0.22×0.5=0.11(元)
答:节能冰箱一天的电费是0.11元。
【点睛】
掌握单价、总价、数量之间的关系是解答题目的关键。
10.21米
【解析】
用帝企鹅的身高乘2.1即可求解,注意结果用四舍五入保留两位小数。
1.05×2.1≈2.21(米)
答:这只非洲鸵鸟的身高大约是2.21米。
【点睛】
解题的关键是明确求一个数的几倍是多少,用这个数乘倍数即可。
11.97吨
【解析】
运的货物总质量÷时间÷汽车辆数=平均每辆汽车每小时运货多少吨,据此列式解答。
95÷4÷8
=23.75÷8
≈2.97(吨)
答:平均每辆汽车每小时运货2.97吨。
【点睛】
关键是掌握小数除法的计算方法,掌握用四舍五入法保留近似数。
12.7元
【解析】
根据题意可得等量关系式:2千克苹果的总价元买香蕉用的钱数,设每千克苹果元,然后列方程依据等式的性质解答即可。
解:设每千克苹果元,
答:每千克苹果6.7元钱。
【点睛】
分析题意,找准等量关系式是解答此题的关键。
13.600元
【解析】
将衬衣的价格设为未知数,再根据“衬衣价格×5-101=羽绒服价格”这一等量关系列方程解方程即可。
解:设这件衬衣的价格是x元。
5x-101=2899
5x-101+101=2899+101
5x=3000
x=3000÷5
x=600
答:这件衬衣的价格是600元。
【点睛】
本题考查了简易方程的应用,能根据题意找出等量关系并列方程是解题的关键。
14.A
解析:A;135只;45只
【解析】
横线上填白兔和黑兔一共180只,设黑兔有x只,那么白兔就有3x只,依据白兔只数+黑兔只数=180只列方程即可解答。
解:设黑兔有x只,那么白兔就有3x只,
x+3x=180
4x=180
x=180÷4
x=45
45×3=135(只)
答:白兔有135只,黑兔有45只。
【点睛】
此题的解题关键是弄清题意,把黑兔的只数设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
15.45公顷;30公顷
【解析】
根据题意,假设景观绿化面积为x公顷,水域面积大约是景观绿化面积的1.5倍,所以水域面积为1.5x公顷,景观绿化面积+水域面积=中央公园面积,据此列出方程,求解即可。
解:设景观绿化面积为x公顷,水域面积为1.5x公顷,
x+1.5x=75
2.5x=75
x=75÷2.5
x=30
75-30=45(公顷)
答:中央公园的水域面积大约是45公顷,景观绿化面积大约是30公顷。
【点睛】
此题的解题关键是弄清题意,把景观绿化面积设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
16.甲车63km;乙车42km
【解析】
设乙车每时行xkm,则甲车每小时行1.5xkm,根据速度和×相遇时间=总路程,列出方程求出x的值是乙车速度,乙车速度×1.5=甲车速度。
解:设乙车每时行xkm。
(1.5x+x)×5=525
2.5x×5=525
12.5x÷12.5=525÷12.5
x=42
42×1.5=63(km)
答:甲车每小时行63km,乙车每小时行42km。
【点睛】
用方程解决问题的关键是找到等量关系。
17.9岁
【解析】
设今年大头儿子x岁,则爸爸今年4x岁,根据爸爸年龄-大头儿子年龄=27岁,列出方程解答即可。
解:设今年大头儿子x岁。
4x-x=27
3x÷3=27÷3
x=9
答:今年大头儿子9岁。
【点睛】
用方程解决问题的关键是找到等量关系。
18.乙队80米;甲队100米
【解析】
设乙队每天铺柏油路x米,则甲队每天铺柏油路1.25x米,再根据两人4天共铺720米,列出方程解答即可。
解:设乙队每天铺柏油路x米,则甲队每天铺柏油路1.25x米。
(米)
答:甲队每天铺柏油路100米,乙队每天铺柏油路80米。
【点睛】
本题考查列方程解决问题,解答本题的关键是掌握题中的等量关系式。
19.50米
【解析】
根据题意,等量关系:(张明的速度+李军的速度)×相遇时间=张明和李军家相距的距离,据此列出方程,并求解;注意单位的换算:1千米=1000米。
3千米=3000米
解:设李军每分钟走米。
(100+)×20=3000
(100+)×20÷20=3000÷20
100+=150
100+-100=150-100
=50
答:李军每分钟走50米。
【点睛】
掌握相遇问题中,速度和、相遇时间、路程之间的关系是解题的关键。
20.60千米
【解析】
设甲车每小时行x千米,则乙车每小时行驶(x+15)千米,再根据相遇时间×速度和=相遇路程,据此列出方程解答即可。
解:设甲车每小时行x千米。
2x+15=135
2x=120
答:甲车每小时行60千米。
【点睛】
本题考查列方程解决问题,解答本题的关键是掌握相遇问题中的数量关系。
21.35张
【解析】
先求出5支铅笔需要多少钱,再用20元减去铅笔的钱,求出剩下的钱,再求出可以买几张彩纸。
(张)
答:可以买35张。
【点睛】
本题考查小数乘除法,解答本题的关键是掌握小数乘除法的计算方法。
22.(1)17.95元;
(2)1785.71日元;
(3)在韩国标价低
【解析】
(1)根据人民币与外汇的对照表,再根据乘法意义解答即可;
(2)根据人民币与外汇的对照表,再根据除法意义解答即可;
(3)分别求出500美元,58万韩币相当于人民币多少元,然后再比较即可。
(1)2.5×7.18=17.95(元)
答:2.5欧元可以兑换17.95元人民币。
(2)100÷0.056≈1785.71(日元)
答:相当于1785.71日元。
(3)500×6.36=3180(元)
580000×0.0054=3132(元)
3132元<3180元
答:在韩国标价低。
【点睛】
此题考查的是人民币与外汇的换算方法,明确换算方法是解题关键。
23.所以得选用边长是5分米的正方形地砖;96块
【解析】
由题意可知,根据长方形面积=长×宽,正方形的面积=边长×边长,如果长方形的面积能够整除该方砖的面积则选用该规格的地砖比较合适。据此解答即可。
4米=40分米,6米=60分米
40×60÷(8×8)
=2400÷64
=37.5(块)
40×60÷(5×5)
=2400÷25
=96(块)
40×60÷(3×3)
=2400÷9
≈267(块)
答:所以得选用边长是5分米的正方形地砖,一共需要96块。
【点睛】
本题考查长方形和正方形的面积,熟记公式是解题的关键。
24.34千克
【解析】
要求出每千克油菜籽可以榨油多少千克,用菜籽油的质量除以油菜籽的质量即可。
17÷50=0.34(千克)
答:每千克油菜籽可以榨油0.34千克。
【点睛】
此题的解题关键是要弄清用菜籽油的质量除以油菜籽的质量,而不是油菜籽的质量除以菜籽油的质量,同时熟练掌握除数是整数的小数除法的计算方法。
25.29元
【解析】
26.9小时超过了24小时,所以前24小时收费20元。剩余的部分按照每0.5小时收费1.5元收费,不足0.5小时按照0.5小时收费,先算出有几个0.5小时,再根据总价单价数量,将数据代入,最后再加上20元,据此即可得出答案。
(小时)
因为不足0.5小时按0.5小时计费,所以2.9小时按照3小时计算。
3÷0.5×1.5+20
=6×1.5+20
=9+20
=29(元)
答:他将支付29元。
【点睛】
解答此题需要分情况探讨,明确题目中所给数量属于哪一种情况,由此选择正确的解题方法。
26.5千米;0.016小时
【解析】
求这辆汽车每小时行驶多少千米,就是求这辆汽车的速度,根据速度=路程÷时间,代入数据计算即可;
求行驶1千米,这辆汽车需要多少小时,就是求时间,根据时间=路程÷速度,代入数据计算即可。
25÷0.4=62.5(千米)
1÷62.5=0.016(小时)
答:这辆汽车每小时行驶62.5千米;行驶1千米,这辆汽车需要0.016小时。
【点睛】
掌握速度、时间、路程三者之间的关系,以及小数除法的计算法则及应用是解题的关键。
27.148千瓦时
【解析】
首先根据“总价=单价×数量”求出第一档的电费,即用0.42×100求出100千瓦时的电费;然后用小明家十月份共付电费减去100千瓦时的电费,求出超过100千瓦时的电费是多少元,这个电费在第二档内收取,根据“数量=总价÷单价”,用第二档的电费除以0.60元,求出第二档的用电量,再用加上第一档的100千瓦时,即是小明家十月的用电量。
(千瓦时)
答:他们家十月用电148千瓦时。
【点睛】
本题是分段计费问题,要弄清楚每段的临界点,和每段的收费标准;掌握小数四则运算法则,以及单价、总价、数量之间的关系是解题的关键。
28.56千米
【解析】
已知甲车每小时行52千米,要求乙车每小时行多少千米,应求出甲乙两车的速度和,根据路程÷相遇时间=速度和,然后用速度和减去甲车的速度,即为所求。
270÷2.5-52
=108-52
=56(千米/时)
答:乙车每小时行56千米。
【点睛】
此题主要考查相遇问题中的基本数量关系:路程÷相遇时间=速度和。
29.4千克
【解析】
根据题意,一箱苹果15千克,每千克11元,依据“单价×数量=总价”,求出买苹果花掉的钱数,再用总钱数减去买苹果花掉的钱数,求出买香蕉所用的钱数,再用买香蕉所用的钱数÷单价=香蕉的重量,列式解答即可。
11×15=165(元)
189.3-165=24.3(元)
24.3÷4.5=5.4(千克)
答:这把香蕉重5.4千克。
【点睛】
此题解答的关键是先认真分析题意,然后根据单价、数量和总价三者之间的关系进行解答即可得出结论。
30.6元
【解析】
妈妈买了苹果和香蕉各4千克,共花了59.2元。每千克苹果11.2元,我们可以设每千克香蕉x元,根据重量×单价=总价即可列方程求解。
解:设每千克香蕉x元。
4×(11.2+x)=59.2
4×(11.2+x)÷4=59.2÷4
11.2+x=14.8
11.2+x-11.2=14.8-11.2
x=3.6
答:每千克香蕉3.6元。
【点睛】
用方程解答本题关键就是找到题目里面隐含的等量关系式,根据等量关系式列方程。
31.四年级100人,五年级120人
【解析】
设四年级去了x人,则五年级去了1.2x人。五年级去的人数-四年级去的人数=20,据此列方程解答。
解:设四年级去了x人,则五年级去了1.2x人。
1.2x-
解析:四年级100人,五年级120人
【解析】
设四年级去了x人,则五年级去了1.2x人。五年级去的人数-四年级去的人数=20,据此列方程解答。
解:设四年级去了x人,则五年级去了1.2x人。
1.2x-x=20
0.2x=20
x=100
五年级:100×1.2=120(人)
答:四年级去了100人,五年级去了120人。
【点睛】
列方程解含有两个未知数的问题时,设其中的一个未知数是x,用含有x的式子表示另一个未知数,再根据等量关系即可列出方程。
32.5平方厘米
【解析】
根据平行四边形的面积=底×高可知,平行四边形的底=面积÷高,先求出平方四边形的底;阴影部分是一个底为(平行四边形的底-6)厘米、高为5厘米的三角形,根据三角形的面积=底×高÷2
解析:5平方厘米
【解析】
根据平行四边形的面积=底×高可知,平行四边形的底=面积÷高,先求出平方四边形的底;阴影部分是一个底为(平行四边形的底-6)厘米、高为5厘米的三角形,根据三角形的面积=底×高÷2,代入数据计算即可。
45÷5=9(厘米)
(9-6)×5÷2
=3×5÷2
=15÷2
=7.5(平方厘米)
答:阴影部分的面积是7.5平方厘米。
【点睛】
灵活运用平行四边形、三角形的面积计算公式是解题的关键。
33.21400元
【解析】
先利用梯形的面积公式求出菜地的面积,再减去小河的面积,小河的面积可利用平行四边形的面积公式求出,最后再乘每平方米收入的钱数,就是总收入,据此解答即可。
(120+100)×8
解析:21400元
【解析】
先利用梯形的面积公式求出菜地的面积,再减去小河的面积,小河的面积可利用平行四边形的面积公式求出,最后再乘每平方米收入的钱数,就是总收入,据此解答即可。
(120+100)×80÷2-80×3
=220×80÷2-240
=8800-240
=8560(m2)
8560×2.5=21400(元)
答:李大爷的这块菜地每年可给家里带来21400元的收入。
【点睛】
此题主要考查梯形和平行四边形的面积的计算方法在实际生活中的应用。
34.15平方米
【解析】
(11.5-4)×4÷2
=7.5×4÷2
=15(平方米)
答:这个鸡舍的面积是多15平方米。
解析:15平方米
【解析】
(11.5-4)×4÷2
=7.5×4÷2
=15(平方米)
答:这个鸡舍的面积是多15平方米。
35.(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑
解析:(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑树.
(2)4125×3.15-14437.5(元),
825×15=12375(元),14437.5>12375,所以种桑树比较划算.
36.18平方厘米
【解析】
解析:18平方厘米
【解析】
37.2200千克
【解析】
根据梯形的面积公式可计算出这块梯形地的面积,然后再用共收的油籽除以梯形的面积即可,列式解答即可得到答案.
梯形土地的面积为:
(220+340)×57.5÷2
=560×57
解析:2200千克
【解析】
根据梯形的面积公式可计算出这块梯形地的面积,然后再用共收的油籽除以梯形的面积即可,列式解答即可得到答案.
梯形土地的面积为:
(220+340)×57.5÷2
=560×57.5÷2,
=32200÷2,
=16100(平方米),
16100平方米=1.61公顷,
3542÷1.61=2200(千克);
答:平均每公顷产油籽2200千克.
38.见详解
【解析】
本题是求梯形的上底,利用梯形的面积公式推导出梯形上底的求法:梯形的上底=梯形的面积×2÷高-下底,本题即可得解。
450×2÷15-40
【点睛】
用梯形上底的求法“梯形的上底=梯
解析:见详解
【解析】
本题是求梯形的上底,利用梯形的面积公式推导出梯形上底的求法:梯形的上底=梯形的面积×2÷高-下底,本题即可得解。
450×2÷15-40
【点睛】
用梯形上底的求法“梯形的上底=梯形的面积×2÷高-下底”,是解答本题的关键。
39.够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积
解析:够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积,与估大的教室面积相比较,如果面积估大的教室都够铺,那么原来的教室面积就一定够铺,进而得出结论。注意单位的换算:1米=10分米。
8.8≈9
5.9≈6
9×6=54(平方米)
8分米=0.8米
0.8×0.8×100
=0.64×100
=64(平方米)
54<64,够。
答:100块够。
【点睛】
掌握用估算解决小数乘法应用题的方法是解题的关键。
40.52;图及思考过程见解析
【解析】
梯形变成正方形时,有些边没有变化,这些没变的边是原来梯形的高与下底。
上底延长了3厘米变成了正方形,说明原来的高和下底就是正方形的边长,上底比这个边长少3厘米。
解析:52;图及思考过程见解析
【解析】
梯形变成正
展开阅读全文