资源描述
天津市第一中学初一数学压轴题专题
一、七年级上册数学压轴题
1.已知,O为直线AB上一点,射线OC将分成两部分,若时,
(1)如图1,若OD平分,OE平分,求的度数;
(2)如图2,在(1)的基础上,将以每秒的速度绕点O顺时针旋转,同时射线OC以每秒的速度绕点O顺时针旋转,设运动时间为.
①t为何值时,射线OC平分?
②t为何值时,射线OC平分?
答案:(1)90°;(2)①s;②12s
【分析】
(1)由角平分线的定义结合平角的定义可直接求解;
(2)①结合角平分线的定义,平角的定义列方程,解方程结可求解;
②结合角平分线的定义,平角的定义列方程
解析:(1)90°;(2)①s;②12s
【分析】
(1)由角平分线的定义结合平角的定义可直接求解;
(2)①结合角平分线的定义,平角的定义列方程,解方程结可求解;
②结合角平分线的定义,平角的定义列方程,解方程结可求解.
【详解】
解:(1)∵OD平分∠AOC,OE平分∠COB,
∴∠COD=∠AOC,∠COE=∠BOC,
∵∠AOC+∠BOC=180°,
∴∠DOE=∠COD+∠COE=90°;
(2)①由题意得:∵∠DOE=90°,
∴当OC平分∠DOE时,∠C′OD′=∠C′OE′=45°,
45°+60°-3t+9t+60°=180°,
解得t=,
故t为s时,射线OC平分∠DOE;
②由题意得:∵∠BOE=60°,
∴当OC平分∠BOE时,∠C′OE=∠C′OB=30°,
30+3t+90°+2(120-9t)=180°,
解得t=12,
故t为12s时,射线OC平分∠BOE.
【点睛】
本题主要考查一元一次方程的应用,角平分线的定义,角的计算等知识的综合运用,列方程求解角的度数是解题的关键.
2.已知多项式,次数是b,4a与b互为相反数,在数轴上,点A表示a,点B表示数b.
(1)a= ,b= ;
(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.(写出解答过程)
(3)若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图,(其中s表示时间单位秒,mm表示路程单位毫米)
t(s)
0<t≤2
2<t≤5
5<t≤16
v(mm/s)
10
16
8
①当t为1时,小蚂蚁甲与乙之间的距离是 .
②当2<t≤5时,小蚂蚁甲与乙之间的距离是 .(用含有t的代数式表示)
答案:(1)-2,8;(2)秒或10秒;(3)①30mm;②32t-14
【分析】
(1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值;
(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤
解析:(1)-2,8;(2)秒或10秒;(3)①30mm;②32t-14
【分析】
(1)根据多项式的次数的定义可得b值,再由相反数的定义可得a值;
(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8-4t;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t-8;
(3)①令t=1,根据题意列出算式计算即可;
②先得出小蚂蚁甲和乙爬行的路程及各自爬行的返程的路程,则可求得小蚂蚁甲与乙之间的距离.
【详解】
解:(1)∵多项式4x6y2-3x2y-x-7,次数是b,
∴b=8;
∵4a与b互为相反数,
∴4a+8=0,
∴a=-2.
故答案为:-2,8;
(2)分两种情况讨论:
①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8-4t;
∵OA=OB,
∴2+3t=8-4t,
解得:t=;
②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t-8;
∵OA=OB,
∴2+3t=4t-8,
解得:t=10;
∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒;
(3)①当t为1时,
小蚂蚁甲与乙之间的距离是:8+10×1-(-2-10×1)=30mm;
②∵小蚂蚁甲和乙同时出发以相同的速度爬行,
∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:
10×2+16×3+8×11=156(mm),
∵原路返回,刚好在16s时一起重新回到原出发点A和B,
∴小蚂蚁甲和乙返程的路程都等于78mm,
∴甲乙之间的距离为:8-(-2)+10×2×2+16×(t-2)×2=32t-14.
故答案为:32t-14.
【点睛】
本题考查了一元一次方程在数轴上两点之间的距离问题中的应用,具有方程思想并会分类讨论是解题的关键.
3.在数轴上,点A代表的数是-12,点B代表的数是2,AB表示点A与点B之间的距离.
(1)①若点P为数轴上点A与点B之间的一个点,且AP=6,则BP=_____;
②若点P为数轴上一点,且BP=2,则AP=_____;
(2)若C点为数轴上一点,且点C到点A点的距离与点C到点B的距离的和是20,求C点表示的数;
(3)若点M从点A出发,点N从点B出发,且M、N同时向数轴负方向运动,M点的运动速度是每秒6个单位长度,N点的运动速度是每秒8个单位长度,当MN=2时求运动时间t的值.
答案:(1)①8;②16;(2)-15或5;(3)6或8
【分析】
(1)①根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解
②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在
解析:(1)①8;②16;(2)-15或5;(3)6或8
【分析】
(1)①根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解
②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时.当P在数轴上点A与B之间时,AP=AB-BP.当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP>14,不符合题目要求.另一种情况是P在B点右侧,此时根据AP=AB+BP作答.
(2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧.根据这两种情况分别进行讨论计算.
(3)分点M在点N的左侧和点M在点N的右侧,两种情况分别列出方程求解.
【详解】
解:(1)①∵AB总距离是2-(-12)=14,P在数轴上点A与B之间,
∴BP=AB-AP=14-6=8,
故答案为:8.
②P在数轴上点A与B之间时,AP=AB-BP=14-2=12;
当P不在数轴上点A与B之间时,因为AB=14,所以P只能在B右侧,此时BP=2,AP=AB+BP=14+2=16,
故答案为:16.
(2)假设C为x,
当C在A左侧时,AC=-12-x,BC=2-x,AC+BC=20,
则-12-x+2-x=20,解得x=-15,
当C在B右侧时,AC=x-(-12),BC=x-2,AC+BC=20,
则x-(-12)+x-2=20,解得x=5,
∴点C表示的数为-15或5;
(3)当M在点N左侧时,
2-8t-(-12-6t)=2,
解得:t=6;
当M在点N右侧时,
-12-6t-(2-8t)=2,
解得:t=8,
∴MN=2时,t的值为6或8.
【点睛】
本题考查了动点问题,一元一次方程的应用.在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解.在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析.
4.已知,A,B在数轴上对应的数分用a,b表示,且,数轴上动点P对应的数用x表示.
(1)在数轴上标出A、B的位置,并直接写出A、B之间的距离;
(2)写出的最小值;
(3)已知点C在点B的右侧且BC=9,当数轴上有点P满足PB=2PC时,
①求P点对应的数的值;
②数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q能移动到与①中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。
答案:(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次
【分析】
(1)求出a、b的值,在数轴表示即可,求出AB的距离;
(2)|x-20|+|x+10|的最小值,就是数轴上
解析:(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次
【分析】
(1)求出a、b的值,在数轴表示即可,求出AB的距离;
(2)|x-20|+|x+10|的最小值,就是数轴上表示20的点,与表示-10的点之间的距离;
(3)①求出c的值,设出点P对应的数,用距离列方程求解即可;
②点Q移动时,每一次对应的数分别列举出来,发现规律,得出结论.
【详解】
解:(1)|a-20|+(b+10)2=0,解得:a=20,b=-10;
∴AB=20-(-10)=30;
(2)|x-a|+|x-b|=|x-20|+|x+10|,
当x位于点A与点B之间时,即,-10≤x≤20时,|x-20|+|x+10|的值最小,最小值为AB=30,
答:|x-20|+|x+10|的最小值为30;
(3)①点C在点B的右侧且|BC|=9,因此点C所表示的数为-1,
设点P表示的数为x,
|x+10|=2|x+1|,解得x=8或x=-4;
②点Q每次移动对应在数轴上的数,
第1次:-1,第3次:-3,第5次:-5,……
第2次:2,第4次:4,第6次:6,……
因此点Q能移动到与①中的点P重合的位置,与8重合时,移动第8次,不可能与-4重合,
答:点Q能移动到与①中的点P重合的位置,移动的次数为8次.
【点睛】
本题考查数轴表示数的意义和方法,理解数轴上两点之间距离的计算方法,是解决问题的关键.
5.已知,如图,实数a、b、c在数轴上表示的点分别是点A、B、C,且a、b、c满足.
(1)求a、b、c的值;
(2)若点A沿数轴向左以每秒1个单位的速度运动,点B和点C沿数轴向右运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒).
①2秒后,点A、B、C表示的数分别是 , , ;
②运动t秒后,求点B和点C之间的距离(用“BC”表示)和点A和点B之间的距离(用“AB”表示);(用含t的代数式表示)
③在②的基础上,请问:3×BC-AB的值是否随着时间t的变化而变化?若不变化,求这个不变的值;若变化,求这个值的变化范围;
(3)若点A沿数轴向右以每秒1个单位的速度运动,点B和点C沿数轴向左运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t(秒).是否存在某一时刻,满足点A和点B之间的距离是点B和点C之间的距离的?若存在,直接写出时间t的值;若不存在,说明理由.
答案:(1);(2)① ,;②, ;③不变,这个不变的值为;(3)存在,,.
【分析】
(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b、c的值,根据两点间的距离,可得答案;
(2)①
解析:(1);(2)① ,;②, ;③不变,这个不变的值为;(3)存在,,.
【分析】
(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b、c的值,根据两点间的距离,可得答案;
(2)①2秒时A计算-8-2,B计算-2+2×2,C计算3+2×3即可,
②t秒时,点A表示-8-t,点B表示-2+2t,点C表示3+3t,根据根据两点间的距离公式计算BC=3+3t-(-2+2t),AB=-2+2t-(-8-t),
③计算3×BC-AB=3(5+t)-(8+3t)即可;
(3)分类讨论.先把A、B、C用t表示,点A表示-8+t,点B表示-2-2t,,点C表示3-3t,BC=3-3t-(-2-2t)=3-3t+2+2t=5-t,AB=-2-2t-(-8+t)=-2-2t+8-t=6-3t,时5-t=2(6-3t), 时5-t=2(3t-6), t≥5时,t-5=2(3t-6)即可.
【详解】
(1)依题意,=0,=0,=0.
所以,,.
(2)①2秒后,点A表示-8-2=-10,
点B表示-2+2×2=-2+4=2,
点C表示3+2×3=3+6=9,
2秒后,点A、B、C表示的数分别是-10,2, 9;
②t秒时,点A表示-8-t,点B表示-2+2t,点C表示3+3t,
BC=3+3t-(-2+2t)=3+3t+2-2t=5+t,
AB=-2+2t-(-8-t)=-2+2t+8+t=6+3t,
③3×BC-AB=3(5+t)-(6+3t)=15+3t-6-3t=9
不变化,这个不变的值为9;
(3)t秒时,点A表示-8+t,点B表示-2-2t,点C表示3-3t,
BC=3-3t-(-2-2t)=3-3t+2+2t=5-t,
AB=-2-2t-(-8+t)=-2-2t+8-t=6-3t,
时5-t=2(6-3t),t=
时5-t=2(3t-6),t=
t≥5时,t-5=2(3t-6),t=舍去
存在,时间t的值为或.
【点睛】
本题考查了实数与数轴,非负数的性质,列代数式,整式的加减,两点间的距离公式,分类构造方程是解题关键.
6.同学们,我们在本期教材中曾经学习过绝对值的概念:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值,记作.
实际上,数轴上表示数的点与原点的距离可记作;数轴上表示数的点与表示数2的点的距离可记作,也就是说,在数轴上,如果点表示的数记为点表示的数记为,则两点间的距离就可记作.
(学以致用)
(1)数轴上表示1和的两点之间的距离是_______;
(2)数轴上表示与的两点和之间的距离为2,那么为________.
(解决问题)
如图,已知分别为数轴上的两点,点表示的数是,点表示的数是50.
(3)现有一只蚂蚁从点出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁恰好从点出发,以每秒2个单位长度的速度沿数轴向右移动.
①求两只蚂蚁在数轴上相遇时所用的时间;
②求两只蚂蚁在数轴上距离10个单位长度时的时间.
(数学理解)
(4)数轴上两点对应的数分别为,已知,点从出发向右以每秒3个单位长度的速度运动.表达出秒后之间的距离___________(用含的式子表示).
答案:(1);(2)或;(3)①;②或;(4)
【分析】
(1)直接利用两点间的距离公式进行计算即可得到答案;
(2)由数轴上表示与的两点间的距离为,列方程再解方程可得答案;
(3)①由路程除以两只蚂蚁的
解析:(1);(2)或;(3)①;②或;(4)
【分析】
(1)直接利用两点间的距离公式进行计算即可得到答案;
(2)由数轴上表示与的两点间的距离为,列方程再解方程可得答案;
(3)①由路程除以两只蚂蚁的速度和可得答案;②设后两只蚂蚁在数轴上距离10个单位长度,再分别表示后对应的数为 对应的数为,用含的代数式表示 再列方程,解方程可得答案;
(4)先求解的值,再表示后对应的数为,再利用两点间的距离公式表示之间的距离即可得到答案.
【详解】
解:(1)数轴上表示1和的两点之间的距离是
故答案为:
(2)由题意得:
或
或
故答案为:或
(3)①由题意可得:
所以两只蚂蚁在数轴上相遇时所用的时间为:
②如图,设后两只蚂蚁在数轴上距离10个单位长度,
由题意得:后对应的数为 对应的数为,
,
或,
或,
经检验:或符合题意,
所以当或两只蚂蚁在数轴上距离10个单位长度.
(4) ,
且,
如图,秒后对应的数为:,
故答案为:
【点睛】
本题考查的是数轴上两点之间的距离,数轴上的动点问题,绝对值方程的应用,非负数的性质,一元一次方程的解法,整式的加减运算,掌握以上知识是解题的关键.
7.已知数轴上点A对应的数为,点B在点A右侧,且两点间的距离为8.点P为数轴上一动点,点C在原点位置.
(1)点B的数为____________;
(2)①若点P到点A的距离比到点B的距离大2,点P对应的数为_________;
②数轴上是否存在点P,使点P到点A的距离是点P到点B的距离的2倍?若存在,求出点P对应的数;若不存在,请说明理由;
(3)已知在数轴上存在点P,当点P到点A的距离与点P到点C的距离之和等于点P到点B的距离时,点P对应的数为___________;
答案:(1)2;(2)①-1;②或10;(3)-8和-4
【分析】
(1)根据数轴上两点之间的距离可得结果;
(2)①根据点P相对于A、B的不同位置分类讨论即可;
②分点P在点A的左侧,点P在A、B之间,
解析:(1)2;(2)①-1;②或10;(3)-8和-4
【分析】
(1)根据数轴上两点之间的距离可得结果;
(2)①根据点P相对于A、B的不同位置分类讨论即可;
②分点P在点A的左侧,点P在A、B之间,点P在点B右侧三种情况,列方程求解;
(3)分点P在点A左侧,点P在A、O之间,点P在O、B之间,点P在点B右侧四种情况,列方程求解,根据结果进行判断.
【详解】
解:(1)∵点A对应的数为-6,点B在点A右侧,A,B两点间的距离为8,
∴-6+8=2,
即点B表示的数为2;
(2)①设点P表示的数为x,
当点P在点A的左侧,
PA<PB,不符合;
当点P在A、B之间,
x-(-6)=2-x+2,
解得:x=-1;
当点P在点B右侧,
PA-PB=AB=8,不符合;
故答案为:-1;
②当点P在点A的左侧,
PA<PB,不符合;
当点P在A、B之间,
x-(-6)=2(2-x),
解得:x=;
当点P在点B右侧,
x-(-6)=2(x-2),
解得:x=10;
∴P对应的数为或10;
(3)当点P在点A左侧时,
-6-x+0-x=2-x,
解得:x=-8;
当点P在A、O之间时,
x-(-6)+0-x=2-x,
解得:x=-4;
当点P在O、B之间时,
x-(-6)+x-0=2-x,
解得:x=,不符合;
当点P在点B右侧时,
x-(-6)+x-0=x-2,
解得:x=-8,不符合;
综上:点P表示的数为-8和-4.
【点睛】
本题考查了一元一次的方程的应用,利用分类讨论和数形结合的思想解决问题是本题的关键.
8.(概念提出)
数轴上不重合的三个点,若其中一点到另外两点的距离的比值为n(n≥1),则称这个点是另外两点的n阶伴侣点.如图,O是点A、B的1阶伴侣点;O是点A、C的2阶伴侣点;O也是点B、C的2阶伴侣点.
(初步思考)
(1)如图,C是点A、B的 阶伴侣点;
(2)若数轴上两点M、N分别表示-1和4,则M、N的阶伴侣点所表示的数为 ;
(深入探索)
(3)若数轴上A、B、C三点表示的数分别为a、b、c,且点C是点A、B的n阶伴侣点,请直接用含a、b、n的代数式表示c.
答案:(1)3;(2)-11,1,2,14;(3)当n=1时,c=,当n>1时,点C在点A、B之间且靠近点B时,c=a+ (b-a);点C在点A、B之间且靠近点A时,c=a+ (b-a);点C在点A、B之
解析:(1)3;(2)-11,1,2,14;(3)当n=1时,c=,当n>1时,点C在点A、B之间且靠近点B时,c=a+ (b-a);点C在点A、B之间且靠近点A时,c=a+ (b-a);点C在点A、B之外且靠近点B时,c=a+ (b-a);点C在点A、B之外且靠近点A时,c=a- (b-a).
【分析】
初步思考:(1)可根据n阶伴侣点的概念判断即可;
(2)根据n阶伴侣点的概念分类讨论即可;
深入探究:(3)根据n阶伴侣点的概念分类讨论即可.
【详解】
解:(1)∵O是点A、B的1阶伴侣点;O是点A、C的2阶伴侣点;O也是点B、C的2阶伴侣点,
∴OA=OB,OC=2OA,OC=2OB,
∴AC=3BC,
∴C是点A、B的3阶伴侣点;
故答案是:3
(2)设表示的数为x,由题意有:
①|x+1|=|x-4|,
解得,x=1或x=-11,
②|x-4|=|x+1|,
解得,x=2或x=14,
综上所述,M、N的阶伴侣点所表示的数为-11,1,2,14;
(3)①当n=1时,c=.
②当n>1时,无论a>b或a<b,均有下列四种情况:
点C在点A、B之间且靠近点B时,c=a+ (b-a);
点C在点A、B之间且靠近点A时,c=a+ (b-a);
点C在点A、B之外且靠近点B时,c=a+ (b-a);
点C在点A、B之外且靠近点A时,c=a- (b-a).
【点睛】
本题主要考查新定义“n阶伴侣点”, 解题的关键是灵活运用所学知识,结合分类讨论思想解决问题.
9.已知:b是最小的正整数,且、b、c满足,请回答问题.
(1)请直接写出、b、c的值.
(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为,点P在0到2之间运动时(即0≤x≤2时),请化简式子: (请写出化简过程).
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BCAB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
答案:(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析
【分析】
(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b
解析:(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析
【分析】
(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;
(2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简;
(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.
【详解】
解:(1)∵b是最小的正整数,∴b=1.
根据题意得:c-5=0且a+b=0,
∴a=-1,b=1,c=5.
故答案是:-1;1;5;
(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,
则:|x+1|-|x-1|+2|x+5|
=x+1-(1-x)+2(x+5)
=x+1-1+x+2x+10
=4x+10;
当1<x≤2时,x+1>0,x-1>0,x+5>0.
∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)
=x+1-x+1+2x+10
=2x+12;
(3)不变.理由如下:
t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.
∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,
∴BC-AB=(3t+4)-(3t+2)=2,
即BC-AB值的不随着时间t的变化而改变.
【点睛】
本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.
10.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.
①此时t的值为 ;(直接填空)
②此时OE是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.
答案:(1)①3,②是,理由见解析;(2)t=5秒或69秒时,OC平分∠DOE;理由见解析;(3)经秒时,OC平分∠DOB.画图说明理由见解析.
【分析】
(1)①根据题意可直接求解;
②根据题意易得∠C
解析:(1)①3,②是,理由见解析;(2)t=5秒或69秒时,OC平分∠DOE;理由见解析;(3)经秒时,OC平分∠DOB.画图说明理由见解析.
【分析】
(1)①根据题意可直接求解;
②根据题意易得∠COE=∠AOE,问题得证;
(2)根据题意先求出射线OC绕点O旋转一周的时间,设经过x秒时,OC平分∠DOE,然后由题意分类列出方程求解即可;
(3)由(2)可得OD比OC早与OB重合,设经过x秒时,OC平分∠DOB,根据题意可列出方程求解.
【详解】
(1)①∵∠AOC=30°,∠AOB=180°,
∴∠BOC=∠AOB﹣∠AOC=150°,
∵OD平分∠BOC,
∴∠BOD=BOC=75°,
∴t=;
故答案为3;
②是,理由如下:
∵转动3秒,∴∠AOE=15°,
∴∠COE=∠AOC﹣∠AOE=15°,
∴∠COE=∠AOE,
即OE平分∠AOC.
(2)三角板旋转一周所需的时间为==72(秒),射线OC绕O点旋转一周所需的时间为=45(秒),
设经过x秒时,OC平分∠DOE,
由题意:①8x﹣5x=45﹣30,
解得:x=5,
②8x﹣5x=360﹣30+45,
解得:x=125>45,不合题意,
③∵射线OC绕O点旋转一周所需的时间为=45(秒),45秒后停止运动,
∴OE旋转345°时,OC平分∠DOE,
∴t==69(秒),
综上所述,t=5秒或69秒时,OC平分∠DOE.
(3)如图3中,由题意可知,
OD旋转到与OB重合时,需要90÷5=18(秒),OC旋转到与OB重合时,需要(180﹣30)÷8=(秒),
所以OD比OC早与OB重合,
设经过x秒时,OC平分∠DOB,
由题意:8x﹣(180﹣30)=(5x﹣90),
解得:x=,
所以经秒时,OC平分∠DOB.
【点睛】
本题主要考查角的和差关系及角平分线的定义,关键是根据线的运动得到角的等量关系,然后根据题意列出式子计算即可.
11.如图1,为直线上一点,过点作射线,,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.(注:本题旋转角度最多.)
(1)将图1中的三角板绕点以每秒的速度沿顺时针方向旋转.如图2,经过秒后,______度(用含的式子表示),若恰好平分,则______秒(直接写结果).
(2)在(1)问的基础上,若三角板在转动的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图3,经过秒后,______度(用含的式子表示)若平分,求为多少秒?
(3)若(2)问的条件不变,那么经过秒平分?(直接写结果)
答案:(1),5;(2),;(3)经过秒平分
【分析】
(1)根据图形和题意得出,再除以每秒速度,即可得出;
(2)根据图形和题意得出,再根据转动速度从而得出答案;
(3)分别根据转动速度关系和平分画图即
解析:(1),5;(2),;(3)经过秒平分
【分析】
(1)根据图形和题意得出,再除以每秒速度,即可得出;
(2)根据图形和题意得出,再根据转动速度从而得出答案;
(3)分别根据转动速度关系和平分画图即可.
【详解】
(1)
∵
∴
∵平分,
∴
∴
∴
解得:秒
(2)度
∵,平分
∴
∴
∴解得:秒
(3)如图:
∵,
由题可设为,为
∴
∵
解得:秒
答:经过秒平分.
【点睛】
此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
12.如图 1,射线OC 在ÐAOB 的内部,图中共有 3 个角:ÐAOB 、ÐAOC 和ÐBOC ,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是ÐAOB 的奇妙线.
(1)一个角的角平分线 这个角的奇妙线.(填是或不是)
(2)如图 2,若ÐMPN = 60° ,射线 PQ 绕点 P 从 PN 位置开始,以每秒10° 的速度逆时针旋转, 当ÐQPN 首次等于180° 时停止旋转,设旋转的时间为t(s) .
①当t 为何值时,射线 PM 是ÐQPN 的奇妙线?
②若射线 PM 同时绕点 P 以每秒6° 的速度逆时针旋转,并与 PQ 同时停止旋转.请求出当射线 PQ 是ÐMPN 的奇妙线时t 的值.
答案:(1)是;(2)①9或12或18;②或或
【分析】
(1)根据奇妙线定义即可求解;
(2)①分3种情况,ÐQPN=2ÐMPN;ÐMPN=2ÐQPM;ÐQPM =2ÐMPN.列出方程求解即可;
②分
解析:(1)是;(2)①9或12或18;②或或
【分析】
(1)根据奇妙线定义即可求解;
(2)①分3种情况,ÐQPN=2ÐMPN;ÐMPN=2ÐQPM;ÐQPM =2ÐMPN.列出方程求解即可;
②分3种情况,ÐMPN=2ÐQPN;ÐMPQ=2ÐQPN;ÐQPN =2ÐMPQ.列出方程求解即可.
【详解】
(1)设∠α被角平分线分成的两个角为∠1和∠2,
则有∠α=2∠1,
∴一个角的平分线是这个角的“奇妙线”;
故答案是:是;
(2)①由题意可知射线 PM 在ÐQPN的内部,
∴ÐQPN=(10t)°,ÐQPM=(10t-60)°,
(a)当ÐQPN=2ÐMPN时,
10t=2×60,
解得t=12;
(b)当ÐMPN=2ÐQPM时,
60=2×(10t-60),
解得t=9;
(c)当ÐQPM =2ÐMPN时,
(10t-60)=2×60,
解得t=18.
故当t为9或12或18时,射线PM是∠QPN的“奇妙线”;
②由题意可知射线 PQ 在ÐMPN的内部,
∴ÐQPN=(10t)°,ÐMPN=(60+6t)°,ÐQPM=ÐMPN-ÐQPN=(60-4t)°,
(a)当ÐMPN=2ÐQPN时,
60+6t=2×10t,
解得t=;
(b)当ÐMPQ=2ÐQPN时,
60-4t=2×10t,
解得t=;
(c)当ÐQPN =2ÐMPQ时,
10t=2×(60-4t),
解得t=.
故当射线PQ是∠MPN的奇妙线时t的值为或或.
【点睛】
本题考查了角之间的关系及一元一次方程的应用,奇妙线定义,学生的阅读理解能力及知识的迁移能力.理解“奇妙线”的定义是解题的关键.
13.如图,点O在直线AB上,.
(1)如图①,当的一边射线OC在直线AB上(即OC与OA重合),另一边射线OD在直线AB上方时,OF是的平分线,则的度数为_______.
(2)在图①的基础上,将绕着点O顺时针方向旋转(旋转角度小于),OE是的平分线,OF是的平分线,试探究的大小.
①如图②,当的两边射线OC、OD都在直线AB的上方时,求的度数.
小红、小英对该问题进行了讨论:
小红:先求出与的和,从而求出与的和,就能求出的度数.
小英:可设为x度,用含x的代数式表示、的度数,也能求出的度数.请你根据她们的讨论内容,求出的度数.
②如图③,当的一边射线OC在直线AB的上方,另一边射线OD在直线AB的下方时,小红和小英认为也能求出的度数.你同意她们的看法吗?若同意,请求出的度数;若不同意,请说明理由.
③如图④,当的两边射线OC、OD都在直线AB的下方时,能否求出的度数?若不能求出,请说明理由;若能求出,请直接写出的度数.
答案:(1);(2)①;②同意,;③能求出,
【分析】
(1)由得,再由角平分线的性质求出的度数,由即可求出结果;
(2)①根据小红和小英的方法,利用角的互补关系和角平分线的性质去求解角度;
②用同上的方
解析:(1);(2)①;②同意,;③能求出,
【分析】
(1)由得,再由角平分线的性质求出的度数,由即可求出结果;
(2)①根据小红和小英的方法,利用角的互补关系和角平分线的性质去求解角度;
②用同上的方法去求出结果;
③设,则,由角平分线的性质表示出和,根据即可求出结果.
【详解】
解:(1)∵,
∴,
∵OF平分,
∴,
∴,
故答案是: ;
(2)①方法1:∵,
∴
∵OE平分,OF平分,
∴,,
∴,
∴,
方法2:设为x度,
∵OE平分,
∴,
∵,
∴,
∵OF平分,
∴,
∴;
②同意,
方法1:∵,OE平分,
∴,
∵,
∴,
∵OF平分,
∴,
∴,
方法2:设为x度,
∵OE平分,
∴,
∴,
∵,
∴,
∵OF平分,
∴,
∴,
③能求出,,理由:
设,则,
∴,
∵OE平分,OF平分,
∴,,
∴.
【点睛】
本题考查角度求解,解题的关键是掌握角平分线的性质,角度互补和互余的性质.
14.已知将一副三角尺(直角三角尺和)的两个顶点重合于点,,
(1)如图1,将三角尺绕点逆时针方向转动,当恰好平分时,求的度数;
(2)如图2,当三角尺摆放在内部时,作射线平分,射线平分,如果三角尺在内绕点任意转动,的度数是否发生变化?如果不变,求其值;如果变化,说明理由.
答案:(1);(2)不变.
【分析】
(1)根据平分,求出∠BOC,再用角的和差求∠AOC即可;
(2)根据角平分线的性质,求出∠DON和∠COM的和是∠BOD和∠AOC和的一半即可.
【详解】
解:(1
解析:(1);(2)不变.
【分析】
(1)根据平分,求出∠BOC,再用角的和差求∠AOC即可;
(2)根据角平分线的性质,求出∠DON和∠COM的和是∠BOD和∠AOC和的一半即可.
【详解】
解:(1)平分
,
;
图1 图2
(2)不变.
平分,平分
,
【点睛】
本题考查了角平分线的性质,熟练运用角平分线的性质,结合角的和差进行计算是解题关键.
15.(学习概念) 如图1,在∠AOB的内部引一条射线OC,则图中共有3个角,分别是∠AOB、∠AOC和∠BOC.若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“好好线”.
(理解运用)
(1)①如图2,若∠MPQ=∠NPQ,则射线PQ ∠MPN的“好好线”(填“是”或“不是”);
②若∠MPQ≠∠NPQ,∠MPQ=α,且射线PQ是∠MPN的“好好线”,请用含α的代数式表示∠MPN;
(拓展提升)
(2)如图3,若∠MPN=120°,射线PQ绕点
展开阅读全文