1、一、解答题1如图1,在平面直角坐标系中,且满足,过作轴于(1)求的面积(2)若过作交轴于,且分别平分,如图2,求的度数(3)在轴上存在点使得和的面积相等,请直接写出点坐标2问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B
2、之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数3如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系4已知:如图(1)直线
3、AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH/EQ交CD于点H,连接PQ,若PQ平分EPH,QPF:EQF1:5,求PHQ的度数5如图1,已ABCD,CA(1)求证:ADBC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究BAE,CDE,E之间的数量关系,并证明(3)如图3,若C90,且点E在线段BC上,DF平分EDC,射线DF在E
4、DC的内部,且交BC于点M,交AE延长线于点F,AED+AEC180,直接写出AED与FDC的数量关系: 点P在射线DA上,且满足DEP2F,DEAPEADEB,补全图形后,求EPD的度数6如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一
5、块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由7对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,所以(1)计算:和;(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:
6、_,并说明你猜想的正确性8阅读下列解题过程:为了求的值,可设,则,所以得,所以;仿照以上方法计算:(1) .(2)计算:(3)计算:9先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依次对应这26个自然数(见下表)QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526给出一个变换公式:将明文转成密文,如,即变为:,即A变为S将密文转成成明文,如,即变为:,即D变为F(1)按上述方法将明文译为密文(2
7、)若按上方法将明文译成的密文为,请找出它的明文10阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:,即,的整数部分为2,小数部分为。请解答(1)的整数部分是_,小数部分是_。(2)如果的小数部分为a,的整数部分为b,求的值。(3)已知x是的整数部分,y是其小数部分,直接写出的值.11a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,现已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒
8、数, (1)求a2,a3,a4的值;(2)根据(1)的计算结果,请猜想并写出a2016a2017a2018的值;(3)计算:a33+a66+a99+a9999的值12探究与应用:观察下列各式:1+3 21+3+5 21+3+5+7 21+3+5+7+9 2问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(1)+(3)+(5)+(7)+(2019)(结果用科学记数法表示)13如图1在平面直角坐标系中,大正方形OABC的边长为m厘米,小正方形ODEF的边长为n厘米,且|m4|+0(1)求点B、点D的坐标(2)起始状态如图1所示,将大正方形固定不动,小
9、正方形以1厘米/秒的速度沿x轴向右平移,如图2设平移的时间为t秒,在平移过程中两个正方形重叠部分的面积为S平方厘米当t1.5时,S 平方厘米;在2t4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米;在小正方形平移过程中,若S2,则小正方形平移的时间t为 秒(3)将大正方形固定不动,小正方形从图1中起始状态沿x轴向右平移,在平移过程中,连接AD,过D点作DMAD交直线BC于M,DAx的角平分线所在直线和CMD的角平分线所在直线交于N(不考虑N点与A点重合的情形),求ANM的大小并说明理由14综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线
10、只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础已知:AMCN,点B为平面内一点,ABBC于B问题解决:(1)如图1,直接写出A和C之间的数量关系;(2)如图2,过点B作BDAM于点D,求证:ABDC;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCB+NCF180,BFC3DBE,则EBC 15已知A(0,a)、B(b,0),且+(b4)20(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足SABC15如图
11、1,平移直线AB经过点C,交y轴于点E,求点E的坐标;如图2,若点F(m,10)满足SACF10,求m(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB8,GD6当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值16如果 x 是一个有理数,我们定义x 表示不小于 x 的最小整数 如3.2 = 4 , -2.6 = -2 , 5 = 5 , -6 = -6.由定义可知,任意一个有理数都能写成 x = x - b 的形式( 0b1 )(1)直接写出x 与 x , x + 1的大小关系;
12、提示1:用“不完全归纳法”推导x 与 x , x + 1的大小关系;提示2:用“代数推理”的方法推导x 与 x , x + 1的大小关系(2)根据(1)中的结论解决下列问题: 直接写出满足3m + 7 = 4 的 m 取值范围; 直接写出方程3.5n - 2 = 2n + 1 的解.17在平面直角坐标系中,满足(1)直接写出、的值: ; ;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值18如图1,以直角的直
13、角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,并且满足(1)直接写出点,点的坐标;(2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,之间的数量关系,直接写出结论19先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知
14、数的值,而是关于未知数的代数式的值,如以下问题:已知实数,满足,求和的值本题常规思路是将两式联立组成方程组,解得,的值再代入欲求值的代数式得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得,由2可得,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则_,_;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数,定义新运算:,其中,是常数,等式右边是通常的加法和
15、乘法运算已知,那么_20每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案21平面直角坐标系中,A(a,0),B(0,b),a,b满足,将线段AB平移
16、得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,BAC的角平分线与DFG的角平分线交于点H,求G与H之间的数量关系22在平面直角坐标系中,点、在坐标轴上,其中、满足(1)求、两点的坐标;(2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标;(3)平移线段到,若点、也在坐标轴上,如图2所示为线段上的一动点(不与、重合),连接、平分,求证:23如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元
17、一次方程组的解,过点作轴的平行线交轴于点(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足当时,求的值24某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法年票分A、B两类:A类年票每
18、张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?25小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计)如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘
19、贴或封盖(1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒?26对于三个数,表示,这三个数的平均数,表示,这三个数中最小的数,如:,;,解决下列问题:(1)填空:_;(2)若,求的取值范围;(3)若,那么_;根据,你发现结论“若,那么_”(填,大小关系);运用
20、解决问题:若,求的值27阅读理解:例1解方程|x|2,因为在数轴上到原点的距离为2的点对应的数为2,所以方程|x|2的解为x2例2解不等式|x1|2,在数轴上找出|x1|2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1或3,所以方程|x1|2的解为x1或x3,因此不等式|x1|2的解集为x1或x3参考阅读材料,解答下列问题:(1)方程|x2|3的解为 ;(2)解不等式:|x2|1(3)解不等式:|x4|+|x+2|8(4)对于任意数x,若不等式|x+2|+|x4|a恒成立,求a的取值范围28已知关于x、y的二元一次方程(1)若方程组的解x、y满足,求a的取值范围;(2)求代
21、数式的值29如图,在平面直角坐标系中,已知,满足平移线段得到线段,使点与点对应,点与点对应,连接,(1)求,的值,并直接写出点的坐标;(2)点在射线(不与点,重合)上,连接,若三角形的面积是三角形的面积的2倍,求点的坐标;设,求,满足的关系式30对,定义一种新的运算,规定:(其中)(1)若已知,则_(2)已知,求,的值;(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围【参考答案】*试卷处理标记,请不要删除一、解答题1(1)4;(2);(2)或【分析】(1)根据非负数的性质易得,然后根据三角形面积公式计算;(2)过作,根据平行线性质得,且,所以;然后把 代入计算即可;
22、(3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出;当在轴负半轴上时,运用同样方法可计算出【详解】解:(1),的面积;(2)解:轴,又,过作,如图,分别平分,即:,;(3)或解:当在轴正半轴上时,如图,设,过作轴,轴,轴,解得, 当在轴负半轴上时,如图,解得,综上所述:或【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等也考查了非负数的性质、坐标与图形性质以及三角形面积公式构造矩形求三角形面积是解题关键2(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点
23、P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点
24、P,Q分别作PEAB,QFAB,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键3(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时
25、,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题
26、的关键4(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线的性质即可证明;(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,想办法构建方程即可解决问题;【详解】(1)如图1中,23,12,13,AB/CD(2)结论:如图2中,PEQ+2PFQ360理由:作EH/ABAB/CD,EH/AB,EH/CD,12,34,2+31+4,PEQ1+4,同法可证:PFQBPF+FQD,BPE2BPF,EQD2FQD,1+BPE180,4+EQD180,1+4+EQD+BPE2180,
27、即PEQ+2(FQD+BPF)=360,PEQ+2PFQ360(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,EQ/PH,EQCPHQx,x+10y180,AB/CD,BPHPHQx,PF平分BPE,EPQ+FPQFPH+BPH,FPHy+zx,PQ平分EPH,Zy+y+zx,x2y,12y180,y15,x30,PHQ30【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键5(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50
28、【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根据平行线的性质得ABCDEF,然后由两直线平行内错角相等可得结论;(3)根据AED+AEC=180,AED+DEC+AEB=180,DF平分EDC,可得出2AED+(90-2FDC)=180,即可导出角的关系;先根据AED=F+FDE,AED-FDC=45得出DEP=2F=90,再根据DEA-PEA=DEB,求出AED=50,即可得出EPD的度数【详解】解:(1)证明:ABCD,A+D=180,C=A,C+D=180,ADBC;(2)BAE+CDE=AED,理由如下:如图2,过点E作EFAB,ABCDABCDEFBAE=A
29、EF,CDE=DEF即FEA+FED=CDE+BAEBAE+CDE=AED;(3)AED-FDC=45;AED+AEC=180,AED+DEC+AEB=180,AEC=DEC+AEB,AED=AEB,DF平分EDCDEC=2FDCDEC=90-2FDC,2AED+(90-2FDC)=180,AED-FDC=45,故答案为:AED-FDC=45;如图3,AED=F+FDE,AED-FDC=45,F=45,DEP=2F=90,DEA-PEA=DEB=DEA,PEA=AED,DEP=PEA+AED=AED=90,AED=70,AED+AEC=180,DEC+2AED=180,DEC=40,ADBC,
30、ADE=DEC=40,在PDE中,EPD=180-DEP-AED=50,即EPD=50【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键6(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC
31、=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的7(1);(2)见解析;(3)【分析】(1)根据的定义,可以直接计算得出;(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;(3)根据(2)中的结论,猜想
32、:【详解】解:(1)已知,所以新的三个数分别是:,这三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和(3)设,由(2)的结论可以得到:,根据三位数的特点,可知必然有:,故答案是:【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同8(1);(2);(3).【分析】仿照阅读材料中的方法求出所求即可【详解】解:(1)根据得:(2)设,则,即:(3)设,则,即
33、:同理可求【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键9(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明文为F,Y,C【分析】(1)由图表找出N,E,T对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET转换成密文:即N,E,T密文为M,Q,P;(2)将密文D,W,N转换成明文:即密文D,W,N的明文为F,Y,C【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换10(1)3;3; (2)4;(3)xy=7【分析】
34、(1)由34可得答案;(2)由23知a=2,由67知b=6,据此求解可得;(3)由23知53+6,据此得出x、y的值代入计算可得【详解】(1)34,的整数部分是3,小数部分是3;故答案为3;3(2)23,a=2,67,b=6,a+b=2+6=4(3)23,53+6,3+的整数部分为x=5,小数部分为y=3+5=2则xy=5(2)=5+2=7【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小11(1)a2=2,a3=-1,a4=(2)a2016a2017a2018= -1(3)a33+a66+a99+a9999=-1【分析】(1)将a1=代入中即可求出a2,再将a2代入求出
35、a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而20163=672,则a2016=-1,a2017= ,a2018=2然后计算a2016a2017a2018的值;(3)观察可得a3、a6、a9、a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=,代入,得 ;将a2=2,代入,得;将a3=-1,代入,得.(2)根据(1)的计算结果,从a1开始,每三个数一循环,而20163=672,则a2016=-1,a2017= ,a2018=2所以,a2016a2017a2018=(-1)2= -1(3)观察可得a3、a6、a9、a99,都等于-1,将
36、-1代入,a33+a66+a99+a9999=(-1)3+(-1)6+(-1)9+(-1)99=(-1)+1+(-1)+(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律12(1)2、3、4、5;(2)第n个等式为1+3+5+7+(2n+1)n2;(3)1.008016106【分析】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3221+3+5321+3+5+7421+3+5+7+952故答案为:2、3、4、5;(2)第n个等式为1
37、+3+5+7+(2n+1) (3)原式(1+3+5+7+9+2019)101021.0201106【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.13(1);(2)3,4,1或5;(3),理由见解析【分析】(1)由非负性的性质以及算数平方根的性质可得出的值,可答案可求出;(2)1.5秒时,小正方形向右移动1.5厘米,即可计算出重叠部分的面积;画出图形,计算所得图形面积即可;小正方形的高不变,根据面积即可求出小正方形平移的距离和时间;(3)过作轴,过作轴,设,则,得出,得出,得出, 【详解】解(1),;(2)当秒时,小正方形向右移动1.5厘米,(平方厘米);如图1所
38、示,小正方形的一条对角线扫过的面积为红色平行四边形,面积为:(平方厘米);如图2,小正方形平移距离为(厘米),小正方形平移的距离为1厘米或5厘米,或,综上所述,小正方形平移的时间为1或5秒;(3)如图3,过作轴,过作轴,平分,设,则,平分,【点睛】本题考查了非负数的性质、坐标与图形的性质、平移的性质、平行线的性质、角平分线的性质、解题的关键是熟练掌握平行线的性质及平移的性质14(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质即可求解【详解】解:(1)如图1,设A
39、M与BC交于点O,AMCN,CAOB,ABBC,ABC90,AAOB90,AC90,故答案为:AC90;(2)证明:如图2,过点B作BGDM,BDAM,DBBG,DBG90,ABDABG90,ABBC,CBGABG90,ABDCBG,AMCN,CCBG,ABDC; (3)如图3,过点B作BGDM,BF平分DBC,BE平分ABD,DBFCBF,DBEABE,由(2)知ABDCBG,ABFGBF,设DBE,ABF,则ABE,ABD2CBG,GBFAFB,BFC3DBE3,AFC3,AFCNCF180,FCBNCF180,FCBAFC3,BCF中,由CBFBFCBCF180得:233180,ABBC
40、,290,15,ABE15,EBCABEABC1590105故答案为:105【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键15(1)A(0,5),B(4,0);(2)E(0,);2或6;(3)24【分析】(1)根据二次根式和偶次幂的非负性得出a,b解答即可;(2)根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;延长CA交直线l于点H(a,10),过点H作HMx轴于点M,根据三角形面积公式解答即可;(3)平移GH到DM,连接HM,根据三角形面积公式解答即可【详解】解:(1),且,(b4)20,a50,b40,解得:a5,b4,A(0,5),B(4,0);(2)连接BE,如图1,BC6,C(2,0