1、2009年普通高等学校招生全国统一考试(四川卷)理科数学第卷本试卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 参考公式:如果事件互斥,那么球的表面积公式 其中表示球的半径如果事件相互独立,那么 球的体积公式 其中表示球的半径 一、选择题:1. 设集合则.已知函数连续,则常数的值是. . . . .复数的值是. . . .4.已知函数,下面结论错误的是 A.函数的最小正周期为 B.函数在区间上是增函数C.函数的图像关于直线对称 D.函数是奇函数5.如图,已知六棱锥的底面是正六边形,则下列结论正确的是. .平面 C. 直线平面 .6.已知为实数,且。则“
2、”是“”的A. 充分而不必要条件 B. 必要而不充分条件 C充要条件 D. 既不充分也不必要条件7.已知双曲线的左右焦点分别为,其一条渐近线方程为,点在该双曲线上,则=A. B. C .0 D. 4 8.如图,在半径为3的球面上有三点,球心到平面的距离是,则两点的球面距离是A. B. C. D. 9.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是A.2 B.3 C. D. 10.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A
3、原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是 A. 12万元 B. 20万元 C. 25万元 D. 27万元 11.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360 B. 228 C. 216 D. 96 12.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是 A.0 B. C.1 D. 第卷二、填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.的展开式的常数项是 (用数字作答) 14.若与相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 15.
4、如图,已知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大小是 。 16设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:设是平面上的线性变换,则 对,则是平面上的线性变换; 若是平面上的单位向量,对,则是平面上的线性变换;设是平面上的线性变换,若共线,则也共线。其中真命题是 (写出所有真命题的序号)三、解答题:本大题共6小题,共74分解答应写出文字说明、证明过程或演算步骤17. (本小题满分12分)在中,为锐角,角所对应的边分别为,且(I)求的值;(II)若,求的值。18. (本小题满分12分)为振兴旅游
5、业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;(II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望。19(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,是等腰直角三角形,(I)求证:;(II)设线段的中点为,在直线上是否存在一点,使得
6、?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;(III)求二面角的大小。20(本小题满分12分)已知椭圆的左右焦点分别为,离心率,右准线方程为。(I)求椭圆的标准方程;(II)过点的直线与该椭圆交于两点,且,求直线的方程。21. (本小题满分12分)已知函数。(I)求函数的定义域,并判断的单调性;(II)若(III)当(为自然对数的底数)时,设,若函数的极值存在,求实数的取值范围以及函数的极值。22. (本小题满分14分)设数列的前项和为,对任意的正整数,都有成立,记。(I)求数列的通项公式;(II)记,设数列的前项和为,求证:对任意正整数都有;(III)设数列的前项和为。已
7、知正实数满足:对任意正整数恒成立,求的最小值。2009年普通高等学校招生全国统一考试(四川卷)理科数学参考答案(1) C (2) B (3) A (4) D (5) D (6) B(7) C (8) B (9) A (10)D (11) B (12) A (13) -20 (14)4 (15) (16)1.设集合则.【考点定位】本小题考查解含有绝对值的不等式、一元二次不等式,考查集合的运算,基础题。解析:由题,故选择C。.已知函数连续,则常数的值是. . . . 【考点定位】本小题考查函数的连续性,考查分段函数,基础题。解析:由题得,故选择B。.复数的值是. . . .【考点定位】本小题考查复
8、数的运算,基础题。解析:,故选择A。4.已知函数,下面结论错误的是 A.函数的最小正周期为 B.函数在区间上是增函数C.函数的图像关于直线对称 D.函数是奇函数【考点定位】本小题考查诱导公式、三角函数的奇偶性、周期、单调性等,基础题。(同文4)解:,其中A、C显然正确,故选择D。5.如图,已知六棱锥的底面是正六边形,则下列结论正确的是. .平面 、C. 直线平面.【考点定位】本小题考查空间里的线线、线面关系,基础题。(同文6)解:由三垂线定理,因AD与AB不相互垂直,排除A;作于,因面面ABCDEF,而AG在面ABCDEF上的射影在AB上,而AB与BC不相互垂直,故排除B;由,而EF是平面PA
9、E的斜线,故排除C,故选择D。6.已知为实数,且。则“”是“”的A. 充分而不必要条件 B. 必要而不充分条件 C充要条件 D. 既不充分也不必要条件【考点定位】本小题考查不等式的性质、简单逻辑,基础题。(同文7)解析:推不出;但,故选择B。7.已知双曲线的左右焦点分别为,其一条渐近线方程为,点在该双曲线上,则=A. B. C .0 D. 4 【考点定位】本小题考查双曲线的渐近线方程、双曲线的定义,基础题。(同文8)解析:由题知,故,故选择C。8.如图,在半径为3的球面上有三点,球心到平面的距离是,则两点的球面距离是A. B. C. D. 【考点定位】本小题考查球的截面圆性质、球面距,基础题。
10、(同文9)解析:由知截面圆的半径,故,所以两点的球面距离为,故选择B。9.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是A.2 B.3 C. D. 【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题。解析:直线为抛物线的准线,由抛物线的定义知,P到的距离等于P到抛物线的焦点的距离,故本题化为在抛物线上找一个点使得到点和直线的距离之和最小,最小值为到直线的距离,即,故选择A。10.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期
11、内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是 A. 12万元 B. 20万元 C. 25万元 D. 27万元 【考点定位】本小题考查简单的线性规划,基础题。(同文10)解析:设甲、乙种两种产品各需生产、吨,可使利润最大,故本题即已知约束条件,求目标函数的最大值,可求出最优解为,故,故选择D。11.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360 B. 228 C. 216 D. 96 【考点定位】本小题考查排列综合问题,基础题。解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有种,其中
12、男生甲站两端的有,符合条件的排法故共有 12.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是 A.0 B. C.1 D. 【考点定位】本小题考查求抽象函数的函数值之赋值法,综合题。(同文12)解析:令,则;令,则由得,所以,故选择A。13.的展开式的常数项是 (用数字作答) 【考点定位】本小题考查二项式展开式的特殊项,基础题。(同文13)解析:由题知的通项为,令得,故常数项为。14.若与相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 w 【考点定位】本小题考查圆的标准方程、两直线的位置关系等知识,综合题。解析:由题知,且,又,所以有,。15.如图,已
13、知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大小是 。 【考点定位】本小题考查异面直线的夹角,基础题。解析:不妨设棱长为2,选择基向量,则,故填写。法2:取BC中点N,连结,则面,是在面上的射影,由几何知识知,由三垂线定理得,故填写。16设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:设是平面上的线性变换,则 对设,则是平面上的线性变换; 若是平面上的单位向量,对设,则是平面上的线性变换;设是平面上的线性变换,若共线,则也共线。其中真命题是 (写出所有真命题的序号)【考点定位】本小题考查新定义,创新题
14、。解析:令,由题有,故正确;由题,即,故正确;由题,即,故不正确;由题,即也共线,故正确;三、解答题(17)本小题主要考查同角三角函数间的关系,两角和差的三角函数、二倍角公式、正弦定理等基础知识及基本运算能力。解:()、为锐角,又, 6分()由()知,. 由正弦定理得,即, , , 12分(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。 解:()由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”, 事件为“采访该团3人中,1人持金卡,0人
15、持银卡”, 事件为“采访该团3人中,1人持金卡,1人持银卡”。 所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是。6分()的可能取值为0,1,2,3 , , 所以的分布列为0123 所以, 12分 (19)本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。解法一:()因为平面平面,平面,平面平面,所以平面所以.因为为等腰直角三角形, ,所以又因为,所以,即,所以平面。 4分 ()存在点,当为线段AE的中点时,PM平面 取BE的中点N,连接AN,MN,则MNPC 所以
16、PMNC为平行四边形,所以PMCN 因为CN在平面BCE内,PM不在平面BCE内, 所以PM平面BCE 8分 ()由EAAB,平面ABEF平面ABCD,易知,EA平面ABCD作FGAB,交BA的延长线于G,则FGEA。从而,FG平面ABCD作GHBD于G,连结FH,则由三垂线定理知,BDFH因此,AEF为二面角F-BD-A的平面角因为FA=FE, AEF=45,所以AFE=90,FAG=45.设AB=1,则AE=1,AF=.FG=AFsinFAG=在RtFGH中,GBH=45,BG=AB+AG=1+=,GH=BGsinGBH=在RtFGH中,tanFHG= = 故二面角F-BD-A的大小为ar
17、ctan. 12分解法二:()因为ABE为等腰直角三角形,AB=AE,所以AEAB.又因为平面ABEF平面ABCD,AE平面ABEF,平面ABEF平面ABCD=AB,所以AE平面ABCD.所以AEAD.因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,E ( 0, 0, 1 ), C ( 1, 1, 0 ).因为FA=FE, AEF = 45, 所以AFE= 90.从而,.所以,.,.所以EFBE, EFBC.因为BE平面BCE,BCBE=B ,所以EF平面BCE. ()存在点M,当M为A
18、E中点时,PM平面BCE. M ( 0,0, ), P ( 1, ,0 ). 从而=,于是=0 所以PMFE,又EF平面BCE,直线PM不在平面BCE内, 故PMM平面BCE. 8分()设平面BDF的一个法向量为,并设=(x,y,z). , 即 取y=1,则x=1,z=3。从而。取平面ABD的一个法向量为。故二面角FBDA的大小为arccos。12分(20)本小题主要考查直线、椭圆、平面向量等基础知识,以及综合运用数学知识解决问题及推理运算能力。 解:()有条件有,解得。 。 所以,所求椭圆的方程为。4分()由()知、。 若直线l的斜率不存在,则直线l的方程为x=-1. 将x=-1代入椭圆方程得。 不妨设、, . ,与题设矛盾。 直线l的斜率存在。 设直线l的斜率为k,则直线的方程为y=k(x+1)。设、,联立,消y得。由根与系数的关系知,从而,又,。 。化简得,解得(21)本小题主要考查函数、数列的极限、导数应用等基础知识、考查分类整合思想、推理和运算能力。解:()由题意知当当当.(4分)()因为由函数定义域知0,因为n是正整数,故0a对一切大于1的奇数n恒成立只对满足的正奇数n成立,矛盾。另一方面,当时,对一切的正整数n都有事实上,对任意的正整数k, 当n为偶数时,设则 当n为奇数时,设则对一切的正整数n,都有综上所述,正实数的最小值为4.14分