收藏 分销(赏)

随机事件的概率知识点总结.doc

上传人:快乐****生活 文档编号:4860480 上传时间:2024-10-15 格式:DOC 页数:15 大小:212.01KB
下载 相关 举报
随机事件的概率知识点总结.doc_第1页
第1页 / 共15页
随机事件的概率知识点总结.doc_第2页
第2页 / 共15页
随机事件的概率知识点总结.doc_第3页
第3页 / 共15页
随机事件的概率知识点总结.doc_第4页
第4页 / 共15页
随机事件的概率知识点总结.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、 .随机事件的概率一、事件1在条件S下,一定会发生的事件,叫做相对于条件S的必然事件2在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件3在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件二、概率和频率1用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据2在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率3对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A)三、事件的关系与运算文字

2、表示符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA,且AB,那么称事件A与事件B相等AB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,则事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件四、概率的几个基本性质1概率的取值范围:0P(A)1.2必然事件

3、的概率P(E)1.3不可能事件的概率P(F)0.4概率的加法公式:如果事件A与事件B互斥,则P(AB)P(A)P(B)5对立事件的概率:若事件A与事件B互为对立事件,则AB为必然事件P(AB)1,P(A)1P(B)1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上则下列结果正确的是()AP(M)P(N)BP(M)P(N)CP(M)P(N)DP(M)P(N)解析:选D由条件知事件M包含:(正、反)、(反、正)事件N包含:(正、正)、(正、反)、(反、正)故P(M),P(N).2(2012)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()

4、A至少有一个红球与都是红球B至少有一个红球与都是白球C至少有一个红球与至少有一个白球D恰有一个红球与恰有二个红球解析:选DA中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D中的两个互斥而不对立3在n次重复进行的试验中,事件A发生的频率为,当n很大时,P(A)与的关系是()AP(A)BP(A)CP(A) DP(A)解析:选A事件A发生的概率近似等于该频率的稳定值4 2012年伦敦奥运会中国与韩国选手进行女子重剑决赛中国选手获胜的概率为0.41.战平的概率为0.27,那么中国选手不输的概率为_解析:中国选手不输的概率为0.410.270.68.答案:0.685从1,2,3,4,5

5、中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ab的概率为_解析:(文)取出的两个数用数对表示,则数对(a,b)共有15种,即:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)其中ab的情形有(1,2),(1,3),(2,3),共3种,故所求概率P.(理)从1,2,3,4,5中任取一数a,从1,2,3中任取一数b,共有5315种取法,满足ab的有(1,2),(1,3),(2,3)共3种,故所求概率P.答案:1.互斥事件是不可能同时发生的两个事件,而对立事

6、件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件2从集合角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合交集为空集;事件A的对立事件B所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集典型例题例1(2012陕西高考)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率自主解答(1)甲品牌

7、产品寿命小于200小时的频率为,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为.(2)根据抽样结果,寿命大于200小时的产品有7570145个,其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率为,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为.1概率是一个常数,它是频率的科学抽象,将事件发生的频率近似地作为它的概率是求一事件概率的基本方法2概率公式P(n次试验中,事件A出现m次)1(2012泰安月考)在一次摸彩票中奖活动中,一等奖奖金为10 000元,某人摸中一等奖的概率是0.001,这是指()A这个人抽1 000次,必有1次中一等奖B这

8、人个每抽一次,就得奖金10 0000.00110元C这个人抽一次,抽中一等奖的可能性是0.001D以上说法都不正确解析:选C摸一次彩票相当于做一次试验,某人摸中一等奖的概率是0.001,只能说明这个人抽一次,抽中一等奖的可能性是0.001,而不能说这个人抽1 000次,必有1次中一等奖,也不能说这个人每抽一次,就得奖金10 0000.00110元,因此选C.互斥事件的概率 例2(2012湖南高考)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示:一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y1

9、0结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)自主解答(1)由已知得25y1055,x3045,所以x15,y20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1.9(分钟)(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物

10、的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”将频率视为概率得P(A1),P(A2),P(A3).因为AA1A2A3,且A1,A2,A3是互斥事件,所以P(A)P(A1A2A3)P(A1)P(A2)P(A3).故一位顾客一次购物的结算时间不超过2分钟的概率为.2(2012郑州模拟)抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A),P(B),则出现奇数点或2点的概率为_解析:因为事件A与事件B是互斥事件,所以P(AB)P(A)P(B).答案:对立事件的概率 例3一盒中装有大小和质地均相同的12个小球,其中5个

11、红球,4个黑球,2个白球,1个绿球从中随机取出1个球,求:(1)取出的小球是红球或黑球的概率;(2)取出的小球是红球或黑球或白球的概率自主解答记事件A任取1球为红球,事件B任取1球为黑球,事件C任取1球为白球,事件D任取1球为绿球,P(A),P(B),P(C),P(D).(1)取出的小球是红球或黑球的概率为P1P(AB)P(A)P(B).(2)法一:取出的小球是红球或黑球或白球的概率为P2P(ABC)P(A)P(B)P(C).法二:“取出的小球是红球或黑球或白球”与“取出的小球为绿球”互为对立事件,故所求概率为P21P(D)1.求复杂的互斥事件的概率一般有两种方法:(1)直接求解法,将所求事件

12、的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算;(2)间接求解法,先求此事件的对立事件的概率,再用公式P(A)1P()求解,即正难则反的数学思想,特别是“至多”“至少”型题目,用间接求解法就显得较简便3(2012长春模拟)黄种人群中各种血型的人所占的比如下表所示:血型ABABO该血型的人所占比/%2829835已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解:(1)

13、对任一人,其血型为A,B,AB,O型血的事件分别记为A,B,C,D,它们是互斥的由已知,有P(A)0.28,P(B)0.29,P(C)0.08,P(D)0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件BD.根据互斥事件的加法公式,有P(BD)P(B)P(D)0.290.350.64.(2)法一:由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件AC,且P(AC)P(A)P(C)0.280.080.36.法二:因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P()1P(BD)10.640.36.答:

14、任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.练习1从1,2,3,9这9个数中任取两数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数上述事件中,是对立事件的是()ABC D解析:选C中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从19中任取两数共有三个事件:“两个奇数”、“一奇一偶”、“两个偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件2(2013温州模拟)甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是()A. B.

15、C. D.解析:选A送卡方法有:(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年片送给同一人的情况有两种,所以概率为.3从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1.则事件“抽到的不是一等品”的概率为()A0.7 B0.65C0.35 D0.3解析:选C事件“抽到的不是一等品”与事件A是对立事件,由于P(A)0.65,所以由对立事件的概率公式得“抽到的不是一等品”的概率为P1P(A)10.650.35.4(2012大同一模)在一个袋子中

16、装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A. B.C. D.解析:选A从五个小球中任取两个共有10种,而123,246,156,取出的小球标注的数字之和为3或6的只有3种情况,故取出的小球标注的数字之和为3或6的概率为.5口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A0.45 B0.67C0.64 D0.32解析:选D摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率P10.450.230

17、.32.6(2012安徽六校联考)连续投掷两次骰子得到的点数分别为m,n,向量a(m,n)与向量b(1,0)的夹角记为,则的概率为()A. B.C. D.解析:选Bcosa,b,1,nm,又满足nm的骰子的点数有(2,1),(3,1),(3,2),(6,3),(6,4),(6,5),共15个故所求概率为P.7(2012北京西城二模)已知向量a(x,1),b(3,y),其中x随机选自集合1,1,3,y随机选自集合1,3,那么ab的概率是_解析:从集合1,1,3中取一个数为x有3种取法,同理y有2种取法,满足ab的有一种取法(x1,y3),故所求的概率P.答案:8(2013宁波模拟)已知盒子中有散

18、落的黑白棋子若干粒,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是_解析:从中取出2粒棋子,“都是黑棋子”记为事件A,“都是白棋子”记为事件B,则A、B为互斥事件所求概率为P(AB)P(A)P(B).答案:9.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示现随机选取一名成员,他至少参加2个小组的概率是_,他至多参加2个小组的概率为_解析:随机选一名成员,恰好参加2个组的概率P(A),恰好参加3个组的概率P(B),则他至少参加2个组的概率为P(A)P(B),至

19、多参加2个组的概率为1P(B)1.答案:10某战士射击一次,问:(1)若中靶的概率为0.95,则不中靶的概率为多少?(2)若命中10环的概率是0.27,命中9环的概率为0.21,命中8环的概率为0.24,则至少命中8环的概率为多少?不够9环的概率为多少?解:(1)记中靶为事件A,不中靶为事件,根据对立事件的概率性质,有P()1P(A)10.950.05.故不中靶的概率为0.05.(2)记命中10环为事件B,命中9环为事件C,命中8环为事件D,至少8环为事件E,不够9环为事件F.由B、C、D互斥,EBCD,F,根据概率的基本性质,有P(E)P(BCD)P(B)P(C)P(D)0.270.210.

20、240.72;P(F)P()1P(BC)1(0.270.21)0.52.所以至少8环的概率为0.72,不够9环的概率为0.52.11(2012新课标全国卷)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售如果当天卖不完,剩下的玫瑰花作垃圾处理(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

21、若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率解:(1)当日需求量n17时,利润y85.当日需求量n1”,又|ab|2包含2个基本事件,所以P(B),所以P(A)1.22011年深圳大运会的一组志愿者全部通晓中文,并且每个志愿者还都通晓英语、日语和韩语中的一种(但无人通晓两种外语)已知从中任抽一人,其通晓中文和英语的概率为,通晓中文和日语的概率为.若通晓中文和韩语的人数不超过3人则这组志愿者的人数为_解析:设通晓中文和英语的人数为x,通晓中文和日语的人数为y,通晓中文和韩语的人数为z,且x,y,zN*,则解得所以这组志愿者的人数

22、为53210.3.(2012琼海模拟)某观赏鱼池塘中养殖大量的红鲫鱼与金鱼,为了估计池中两种鱼数量情况,养殖人员从池中捕出红鲫鱼和金鱼各1 000条,并给每条鱼作上不影响其存活的记号,然后放回池内,经过一段时间后,再从池中随机捕出1 000条鱼,分别记录下其中有记号的鱼数目,再放回池中,这样的记录作了10次,将记录数据制成如图所示的茎叶图(1)根据茎叶图分别计算有记号的两种鱼的平均数,并估计池塘中两种鱼的数量(2)随机从池塘中逐条有放回地捕出3条鱼,求恰好是1条金鱼2条红鲫鱼的概率解:(1)由茎叶图可求得有记号的红鲫鱼数目的平均数为20(条);有记号的金鱼数目的平均数为20(条)由于有记号的两

23、种鱼数目的平均数均为20(条),故可认为池中两种鱼的数目相同,设池中两种鱼的总数目为x条,则有,解得x50 000,因此可估计池中的红鲫鱼与金鱼的数量均为25 000条(2)由于是用随机逐条有放回地捕出3条鱼,每一条鱼被捕到的概率相同,用x表示捕到的是红鲫鱼,y表示捕到的是金鱼,基本事件总数有8种(x,x,x),(x,x,y),(x,y,x),(y,x,x),(x,y,y),(y,x,y),(y,y,x),(y,y,y),恰好是1条金鱼,2条红鲫鱼的基本事件有3个,故所求概率为P.补充练习:1掷一颗质地均匀的骰子,观察所得的点数a,设事件A“a为3”,B“a为4”,C“a为奇数”,则下列结论正

24、确的是()AA与B为互斥事件 BA与B为对立事件CA与C为对立事件 DA与C为互斥事件解析:选A依题意,事件A与B不可能同时发生,故A与B是互斥事件,但A与B不是对立事件,显然,A与C既不是对立事件也不是互斥事件2(2012泰州模拟)从数字1,2,3,4,5中随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为()A. B.C. D.解析:选D基本事件总数为555125,而各位数字之和等于9分三类:(1)三个数字都不相同,可取1,3,5或2,3,4共组成12个三位数;(2)三个数字有两个相同,可取2,2,5或4,4,1共组成6个三位数;(3)三个数字都相同,有333,即1个

25、三位数所求概率为.3由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:排队人数012345人以上概率0.10.160.30.30.10.04求:(1)至多2人排队的概率;(2)至少2人排队的概率解:记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,A、B、C彼此互斥(1)记“至多2人排队”为事件E,则P(E)P(ABC)P(A)P(B)P(C)0.10.160.30.56.(2)记“至少2人排队”为事件D.“少于2人排队”为事件AB,那么事件D与事件AB是对立事件,则P(D)1P(AB)1P(A)P(B)1(0.10.16)0.74.欢迎您的光临,word文档下载后可以修改编辑。双击可以删除页眉页脚。谢谢!单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善 教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。Word范文

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服