1、 华东交通大学理工学院论文题目:压电式加速度传感器课 程:传感器原理及其应用 姓 名 ; 吕 进 专 业 : 通 信 工 程 班 级 : 12 通信2班 学 号 :20120210420243 华东交通大学理工学院压电式加速度传感器前言目前,国内研制的高冲击压电加速度传感器的性能受材料、结构、工艺和安装等因素的影响,量程和上限频率难以得到提高,从而导致在高冲击下测量的线性度较差。现在国内研制的压电传感器样机可测量的最大冲击加速度为1 OO,OOOg,安装谐振频率约为9.5kHz,线性度为10%,还不能完全满足工程使用的要求。因此,为了满足高速碰撞测试和常规触发引信用压电加速度传感器的要求,本文
2、研究提高压电加速度传感器的量程和频响的设计技术,这项技术可应用在钻地武器试验和深层钻地弹引信中。 在核武器飞行试验中,均要进行触地测试,了解核弹头碰地的状况,测量其触地加速度,为其触发引信的设计和验证提供依据。在常规钻地弹、侵彻弹等武器研究中,均需要大量程高频响的加速度传感器进行测量。目前国内的传感器难以满足要求,现采用国外的传感器(如7270A),但价格昂贵且对华禁运。 综上所述,本文研究提高压电传感器的量程和频响的设计技术,为改进压电加速度传感器的性能奠定基础,为高速触地用测试传感器和深侵彻引信传感器的研究提供技术参考。目 录前言1摘要3关键词3国内外现状3压电式加速度传感器原理4灵敏度8
3、误差形成因素分析9提高传感器频响的措施9实际应用11总结12参考文献12摘要二十一世纪的高效发展中,信息时代已然来临,掌握信息的重要性日益重要,在人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一随着社会的进步,科学技术的发展,特别是近20年来,电子技术日新月异,计算机的普及和应用把人类带到了信息时代,各种电器设备充满了人们生产和生活的各个领域,相当大一部分的电器设备都应用到了传感器件,传感器技术是现代信息技术中主要技术之一,在国民经济建设中占据有极其重要的地位。关键词传感器 原理 速度 光电效应光电元
4、件压电特性传感器分类传感器应用国内外现状自1880年J.居里和P.居里发现压电效应以来21,这种类型的压电传感器就广泛应用于各个领域。经过近半个世纪的发展,压电加速度传感器的材料、结构设计和工艺都有了很大的进步。这些对改善传感器的性能起到了至关重要的作用。 经过调研,了解到国外几种高冲击压电加速度传感器的主要技术指标,如表1.1所示。表1.1国外几种压电加速度传感器的主要技术指标公司名称 灵敏度(mv/g)频响(Hz)最大冲击加速度(g)Kistler 8743A10000.05 0.5一10k120, 000 (士1%)PCB 350B21 0.050.3一10k(t5%)100, 000E
5、NDEVC O2225MSA0.025 0.5一8k100, 000 压电材料性能的改进以及新型压电材料的研制成功极大地推动了压电传感器的进步。从最开始的石英到BaTi03压电陶瓷,错钦酸铅(PZT)压电陶瓷,再到压电聚合物如聚偏二氟乙烯(PVDF)等新型压电材料2l。压电材料制备工艺的进展对压电材料的应用及理论研究具有推动作用,单晶技术的进展培育了许多实用化的压电材料,薄膜工艺的进展为压电器件的平面化、集成化创造了条件。压电材料的这一系列进步为设计大量高性能的压电元件提供了技术保障。 压电加速度传感器由最初的基座压缩式结构形式,这种结构因易受外界环境影响,后演变为中心压缩型,然后又改进为性能
6、最佳的各种剪切型设计,如环形剪切型。虽然剪切型的各种性能优异,但是剪切型的结构决定了它不能承受较强的冲击。剪切型对工艺的要求很高,国外的研究机构(如B&K公司)对剪切型压电加速度传感器做了大量研究3。为了提高低频灵敏度,后来还研制了压电梁式加速度传感器。随着MEMS技术和微机械加工技术的发展,出现了可以把质量块、压电元件和基座做成一体的微小型压电传感器,可以把信号处理电路与传感器做在同一基片上的ICP传感器。大量程高频响的压电加速度传感器主要以中心压缩型为主,剪切型的极为罕见。国内在压电加速度传感器方面的研究起步较晚,且结构设计和工艺水平落后于国外。目前国内压电传感器的主要结构是中心压缩型,较
7、好的高冲击压电加速度传感器(中心压缩型)样机的主要技术指标为:最大冲击加速度I OO,OOOg,最高频响8kHz。在压电加速度传感器的研制方面,北戴河亿柏传感器技术研究所和西安204所做得较好。压电式加速度传感器原理压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。电荷输出压电加速度传感器,采用剪切和中心压缩结构形式。其原理利用压电晶体的电荷输出与所受的力成正比,而所受的力在敏感质量一定的情况下与加速度值成正比。在一定条件下
8、,压电晶体受力后产生的电荷量与所感受到的加速度值成正比。经过简化后的方程为: QdijF=dijMa (1) 式中:Q压电晶体输出的电荷。 dij压电晶体的二阶压电张量。 M传感器的敏感质量。 a所受的振动加速度值。 每只传感器中内装晶体元件的二阶压电张量是一定的,敏感质量M是一个常量,所以公式(1)说明压电加速度传感器产生的电荷量与振动加速度a成正比。这就是压电加速度传感器完成的机电转换的工作原理。 压电加速度传感器承受单位振动加速度值能输出电荷量的多少,称其为电荷灵敏度,单位为pC/ms-2或pC/g(1g9.8 ms-2)。 压电加速度传感器实质上相当于一个电荷源和一只电容器,通过等效电
9、路简化后,则可算出传感器的电压灵敏度为: SvSQ/Ca SV传感器电压灵敏度 mV/ms-2 SQ传感器的电荷灵敏度 pC/ms-2 Ca传感器的电容量 pF 压电加速度传感器在使用中最主要的三项指标为:a电荷灵敏度(或电压灵敏度)、b谐振频率(工作频率在谐振频率1/3以下)、c最大横向灵敏度比。由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。 为此,通常把传感器信号先输到高输入阻抗的前置放大器。经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示 仪表或记录器。 压电式加速度传感器构成元件(a)中心安装压缩型 (b)环形
10、剪切型 (c) 三角剪切型图13.18 压电式加速度计常用的压电式加速度计的结构形式如图13.18所示。S是弹簧,M是质块,B是基座,P是压电元件,R是夹持环。图13.18a是中央安 装压缩型,压电元件质量块弹簧系统装在圆形中心支柱上,支柱与基座连接。这种结构有高的共振频率。然而基座B与测试对 象连接时,如果基座B有变形则将直接影响拾振器输出。此外,测试对象和环境温度变化将影响压电元件,并使预紧力发生变化, 易引起温度漂移。图13.18c为三角剪切形,压电元件由夹持环将其夹牢在三角形中心柱上。加速度计感受轴向振动时,压电元件承 受切应力。这种结构对底座变形和温度变化有极好的隔离作用,有较高的共
11、振频率和良好的线性。图13.18b为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。压电式加速度传感器幅频特性图13.19 压电式加速度计的幅频特性曲线 加速度计的使用上限频率取决于幅频曲线中的共振频率图(图13.19)。一般小阻尼(z=0.1)的加速度计,上限频率若取为共振频率的 1/3,便可保证幅值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接
12、的固定情况下得到的。实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。加速度计与试件的各种固定方法见 图13.20。图13.20 加速度计的固定方法其中图13.20a采用钢螺栓固定,是使共振频率能达到出厂共振频率的最好方法。螺栓不得全部拧入基座螺孔,以免引起基座 变形,影响加速度计的输出。在安装面上涂一层硅脂可增加不平整安装表面的连接可靠性。需要绝缘时可用绝缘螺栓和云母垫片来 固定加速度计(图13.20b),但垫圈应尽量簿。用一层簿蜡把加速度计粘在试件平整表面上(图13.20c),也可用于低温(40以下)的场合。手持探针测振方法(图13.20d)在多点测试时使用特
13、别方便,但测量误差较大,重复性差,使用上限频率一般不高于 1000Hz。用专用永久磁铁固定加速度计(图13.20e),使用方便,多在低频测量中使用。此法也可使加速度计与试件绝缘。用硬性粘接螺栓(图13.20f)或粘接剂(图13.20g)的固定方法也长使用。某种典型的加速度计采用上述各种固定方法的共振频率分别约为:钢螺栓固定法31kHz,云母垫片28kHz,涂簿蜡层29kHz,手持法2kHz,永久磁铁固定法7kHz。灵敏度压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和 电荷灵敏度两种表示方法。前者是加速度计输出电压(mV)与所承受加速度之比;后
14、者是加速度计输出电荷与所承受加速度之比。 加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s2。这是一种已为大家所接受的表示方式,几乎所有 测振仪器都用g作为加速度单位并在仪器的板面上和说明书中标出。对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。一般来说,加速度计尺寸越大 ,其固有频率越低。因此选用加速度计时应当权衡灵敏度和结构尺寸、附加质量的影响和频率响应特性之间的利弊。压电晶体加速度计的横向灵敏度表示它对横向(垂直于加速度计轴线)振动的敏感程度,横向灵敏度常以主灵敏度(即加速度计的电压灵敏度或电荷灵敏度)的百分比表示。一般在壳
15、体上用小红点标出最小横向灵敏度方向,一个优良的加速度计的横向灵敏度应小于主灵敏度的3。因此,压电式加速度计在测试时具有明显的方向性。压电传感器中的压电元件材料一般有三类:一类是压电晶体,如石英晶体;另一类是经过极化处理的压电陶瓷;压电陶瓷是人工制造的多晶压电材料,它比石英晶体的压电灵敏度高得多,而制造成品较低,因此目前国内外生产的压电元件绝大多数都采用压电陶瓷。常用的一代女陶瓷材料有锆钛酸铅系列压电陶瓷(PZT)及非铅系压电陶瓷(BaTiO3等)第三类是高分子压电材料。典型的高分子压电材料有聚偏二乙烯(PVF2或PVDF)、聚氟乙烯(PVF)、改性聚氯乙烯(PVC)等。它是一种柔软的压电材料,
16、可根据需要支撑薄膜或电缆套管等形状。它不易破碎,具有防水性,可以大量连续拉制,制成较大面积或较长的尺度,价格便宜,频率响应范围较宽,测量动态范围可达80dB。误差形成因素分析压电加速度计的前置放大器 压电元件受力后产生的电荷量极其微弱,这电荷使压电元件边界和接在边界上的导体充电 到电压U=q/Ca(这里Ca是加速度计的内电容)。要测定这样微弱的电荷(或电压)的关键是防止导线、测量电路和加速度计本身的电荷泄漏。换句话讲,压电加速度计所用的前置放大器应具有极高的输入阻抗,把泄漏减少到测量准确度所要求的限度以内,压电式传感器的前置放大器有:电压放大器和电荷放大器。所用电压放大器就是高输入阻抗的比例放
17、大 器。其电路比较简单,但输出受连接电缆对地电容的影响,适用于一般振动测量。电荷放大器以电容作负反馈,使用中基本不受 电缆电容的影响。在电荷放大器中,通常用高质量的元、器件,输入阻抗高,但价格也比较贵。从压电式传感器的力学模型看,它具有“低通”特性,原可测量极低频的振动。但实际上由于低频尤其小振幅振动时,加速度值小,传感器的灵敏度有限,因此输出的信号将很微弱,信噪比很低;另外电荷的泄漏,积分电路的漂移(用于测振动速度和位 移)、器件的噪声都是不可避免的,所以实际低频端也出现“截止频率”,约为0.11Hz左右。提高传感器频响的措施结构选择与设计 1.结构应选择中心压缩型的结构形式。 2.为了便于
18、传感器的安装,在基座上设计螺纹头,这还有利于提高基座的刚度。 3.基座不要太厚,厚基座会降低传感器的固有频率,但要满足安装的刚度要求。 4.选用较薄的压电片来提高刚度,减轻等效质量,从而提高固有频率。压电片的面积可以根据惯性力产生的瞬态应力来计算,一般来说,压电片、质量块、螺母的截面尺寸相近,面积对应力的影响较小。 5.螺纹的确定。压电片面积的大小决定预紧力矩的大小,传感器的预紧力矩23由下式计算 (3一10)式中,T为预紧力矩,QP为作用在螺母安装面(即压电片截面)上的压力(N), d为螺纹公称直径(mm)。对于石英片,预紧力矩为0.6N - m(约为40MPa );对于PZT 8压电陶瓷片
19、,预紧力矩为0.3N - m(约为20MPa)。在一定范围内,可以加大预紧力矩来提高传感器各部件之间的接触刚度,从而提高传感器的频响。 由预紧力矩计算螺纹牙强度,以确定螺纹牙啮合数量,螺纹牙的强度校核如下:剪切应力(MPa):= 弯曲应力(MPa)= 式中b=0.87P(mm), p为螺距(mm), h为螺纹牙工作高度(mm), KZ=5P/d, z为螺纹牙啮合数量。 6.一般质量块和压电片的截面一样,由于加工误差,质量块的截面可能会偏小,为了充分利用压电片,质量块的截面应稍大一点。也可以不用质量块,因为螺母和压电片的部分质量是惯性质量的一部分。 7.螺母的设计也要考虑刚度和强度,螺母厚度根据
20、(3-11)和(3-12)计算的螺纹牙啮合数量来定。由于部分螺母质量是惯性质量的组成部分,要尽量减小螺母质量,为保证刚度,可以把螺母下端设计成较薄的圆环,在上端设计一些加强筋。 8.导电盘(电极)可用电阻率低的铜箔。因为导电盘是质量一弹簧系统的组成部分,为了避免因导电盘的蠕变而降低压电传感器的频响,导电盘要尽量减薄或选用被青铜等导电性能好、具有高强度和高弹性的材料。9.绝缘套做成环状套在螺杆外面,有绝缘和装配定位的作用,厚度约0.4mm。材料选择问题 1.为了得到较大的刚度,压电材料要选择弹性系数高的压电材料,如PZT 8压电陶瓷、石英、锗酸秘晶体等。为获得高固有频率,在弹性模量相近时选用选密
21、度较低的压电材料。 2.基座要选择弹性模量大的材料。在对重量没有要求的情况下,基座要选钢而不选钦合金TC4,因为钢基座传感器的固有频率更高,钦合金TC4价格贵且加工有毒。若工作环境恶劣,则基座和壳体要选择有良好耐腐蚀性材料。 3.质量块要尽量薄以提高其刚度,质量块材料选钢和钦合金TC4较好。4.绝缘套的常用材料是聚四氟乙烯,对于200以上高温环境中工作的压电传感器,要采用高温绝缘材料,如聚酞亚胺、陶瓷、电子玻璃等。大量程高频响压电加速度传感器设计技术研究实际应用目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的
22、选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。总结由于微电子技术和微机械加工技术发展,传感器正向微型化、多功能化,智能化方向发展。微型化传感器利用微
23、机械的加工技术将微米级的敏感元件、信号调理器、数据处理装置集成封装在一块芯片上。这将成为一种趋势。 建立了中心压缩型压电加速度传感器的力学模型和数学模型。运用数学模型和Ansys分析了传感器各部件结构、材料对传感器固有频率的影响及其规律,并提出了提高压电传感器频响的措施。 用模态叠加法计算了传感器对冲击加速度的响应,分析了压电片受力的影响因素,提出了提高压电传感器量程的具体措施。用瞬态动力学分析软件Msc.dytran对压电传感器在弹体的碰撞环境下进行了模拟仿真,分析了被测物体和基座的不同材料组合对压电片受力的影响。理论计算和有限元模拟仿真的结果接近。 用0.6mm厚PZT 8压电陶瓷时压电传
24、感器谐振频率达到16.1 kHz;用0.6mm厚石英片时压电传感器量程达到8万g,谐振频率为10.1kHz,线性度为7.7%,抗冲击能力达10万g以上。理论计算、模拟仿真及实验表明:薄压电片可以提高固有频率;合适厚度的基座和压电片、轻质量螺母及薄质量块(也可以不用质量块)可以提高量程。 安装时基座存在不同程度的变形,变形降低了压电传感器的量程和线性度,导致有些压电片在7万g的冲击下断裂以及传感器的线性度不高。如果能减小安装时基座变形的影响,传感器的性能会得到明显改善。参考文献1李希文等传感器与信号调理技术西安电子科技大学出版社2008.122吴建平传感器原理及应用机械工业出版社2008.113
25、陈建元传感器技术机械工业出版社2008.104郁有文传感器原理及工程应用西安电子科技大学出版社2008.75张洪润实传感器应用设计300例(上册)北京航空航天大学出版社2008.106周旭现代传感器技术国防工业出版社2007.1.17范茂军传感器技术国防工业出版社2008.88谢文和刘蕊传感器及其应用(第二版)高等教育出版社2009.49陈林星无线传感器网络技术与应用电子工业出版社2009.410纪宗南现代传感器应用技术和实用线路中国电力出版社2009.111黄继昌,徐巧鱼,张海贵,等.传感器工作原理及应用实例M.北京:人民邮电出版社,1998.160.12雷玉堂,王庆有.光电检测技术M.北京:中国计量出版社,1997.236-238.13张国忠,赵家贵.检测技术M.北京:中国计量出版社,1998.378-382.13