资源描述
黑龙江工程学院本科生毕业设计
第1章 绪 论
1.1制动系统设计的意义
汽车制动器是汽车制动系统的重要组成部分,是汽车行驶安全的重要部件之一.作为一种新型的制动部件,盘式制动器与传统的鼓式制动器比较,具有散热快、重量轻 、构造简单、调整方便、制动效果稳定、热稳定性好、耐高温性能好等优势,随着高速公路发展和车流密度增大,出现了频繁的交通事故。而盘式制动器,尤其是浮动钳盘式制动器以其优越的制动性能已得到了汽车制造厂家及用户的极大关注,有着非常好的发展前景。从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。
汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系统工作可靠的汽车,才能充分发挥其动力性能作为制动系重要组成部分之一的制动器在我国发展前景广阔,目前乘用车主要采用前盘后鼓式和全盘式制动器,20%的乘用车采用前盘后鼓式制动器,商用车主要采用全鼓式制动器,只有高档客车和有特殊需求的车辆才采用前盘后鼓式制动器和全盘式制动器。随着对汽车制动性能的提高,越来越多的先进电子制动技术得到采用。
制动器作为制动系中直接作用制约汽车运动的一个关健装置,车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用,而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上。制动器是将汽车的动能以摩擦方式转化为热能并加以吸收的机构,不仅要按产生足够的制动力的条件,还要按能量容量和磨损寿命足够的条件来确定制动器。为确保制动稳定性可靠,热稳定性好,寿命长,造价低,现今的制动器产品无论从性能、结构方面,还是生产制造方式和操纵控制方面,都在发生着诸多的变化。它们大大地优化了制动器各方面的性能,从某种程度上看,这些变化也反映了汽车制动器的发展方向。制动器主要有摩擦式、液力式和电磁式等几种形式。电磁式制动器虽有作用滞后性好、易于连接而且街头可靠等优点,但因成本高,只在一部分总质量较大的商用车用车轮制动器或缓速器;液力式制动器一般只用作缓速器。目前广泛使用的仍为摩擦式制动器。在国内主要从事鼓式制动器总成的企业有万向钱潮、亚太机电、重庆红宇等一些企业。2004年前八家企业产量集中度达到85.4%。随着近几年汽车盘式制动器的发展,液压鼓式制动器目前只在一些比较低档的经济型轿车上在使用。根据慧聪汽车市场研究所最新的统计表明,2008年1~7月,我国乘用车中刹车制动器用鼓式制动器只占20%,并且鼓式制动器目前已经彻底退出前轮制动。自2000年以来,我国盘式制动器市场需求增长速度发展非常快。从中国汽车工业协会统计的情况来看,2000年我国盘式制动器的产量只有57.58万套,到2004年迅速增长到468.72万套,增长7倍多,年平均增长率高达68.9%,2007年增长至1000万套。过去5年里,我国盘式制动器应用的增长非常迅速。
汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。
鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。
盘式制动器的旋转元件是一个垂向安放且以两侧面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用于制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用;而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。
随着我国汽车工业技术的发展,特别是轿车工业的发展,合资企业的引进,国外先进技术的进入,汽车上采用盘式制动器配置正逐步在我国形成规模。特别是在提高整车性能、保障安全、提高乘车者的舒适性等方面都发挥了很大的作用, 预计未来几年,随着我国公路交通条件的改善,高等级公路的发展,新法则要求的实施,车辆性能的不断提高,盘式制动器作为新型的能提高汽车主动安全性的产品将会得到快速的推广和应用,有着广阔市场前景。现在汽车盘式制动器的研究和开发应注重的问题主要是:提高制动器的制动效能、防止尘污和锈蚀、减轻重量、简化结构、降低成本、向电子报警和智能化系统的发展,以及实用性更强与寿命更长等。
1.2制动系统研究现状
汽车是现代交通工具中用得最多、最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。
虽然近几年从德国大众、法国雷诺、美国通用等国外汽车引进了轿车,不少零配件的国产率也比较高,但引进的主要是总成和零配件,没有引进开发技术,至于轻型客货车的开发技术引进就更少了,所以我国自行开发轻型客货车及其轿车的能力,跟汽车发达国家相比差距还是很大。近年来我国出版过很多汽车制动方面的著作,但是从数量上还是不能满足汽车工业发展的要求。特别是在汽车制动器的开发和设计方面与发达国家相差很大,许多尖端技术还不能了解。所以对于研究设计制动器来说,在我国有着非常重要的影响。
哈飞路宝是哈飞汽车继哈飞中意之后与意大利Pininfarina公司联合设计开发的一款两厢五门轿车,其特点:车身小巧、内饰外观精美、安全性能高、动力强劲、油耗低,排放根据需求可分别达到欧洲Ⅱ号与欧洲Ⅲ号标准。路宝汽车制动器是前轮盘式制动器,后轮鼓式制动器,相比四轮都采用盘式制动器,这种设计方式初衷是使其更经济。因为对路宝汽车的消费人群来说,选路宝本身就因为其优秀的性价比,所以需要为其设计经济实用的制动器。
通过制动器的结构型式和设计参数对汽车安全性有直接影响.因此,制动器型式选择、设计参数选择及设计计算对汽车的整车设计极其重要。通过制动器设计熟悉汽车总成和零件设计。
1.3制动系统设计内容
(1)研究、确定制动制动驱动形式。
(2)研究、确定制动系统的构成
1)设计制动系统示意图。
2)驻车制动采用的形式。
3)是否需要有辅助制动。
(3)汽车必需制动力及其前后分配的确定 。
(4) 确定制动器制动力、摩擦片寿命及构造、参数。
(5) 制动器零件设计及作图。
(6) 制动操纵系统设计。
(7) 管路设计及布置
第2章 制动系统总体方案设计
汽车制动系统总体方案设计,主要涉及制动器的结构型式选择,制动驱动机构的结构型式选择,制动管路布置结构型式的选择等三个方面。本章将就这三个方面的问题进行分析论证。
2.1 制动器的结构型式的选择
车轮制动器主要用于行车制动系统,有时也兼作驻车制动之用。制动器主要有摩擦式、液力式、和电磁式等三种形式。电磁式制动器虽有作用滞后性好、易于连接而且接头可靠等优点,但因成本太高,只在一部分总质量较大的商用车上用作车轮制动器或缓速器;液力式制动器一般只用缓速器。目前广泛使用的仍为摩擦式制动器[2]。
摩擦式制动器按摩擦副结构不同,可以分为鼓式、盘式和带式三种。带式只用于中央制动器;鼓式和盘式应用最为广泛。鼓式制动器广泛应用于商用车,同时鼓式制动器结构简单、制造成本低。
鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的凸缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。现外束型鼓式制动器主要用于中央制动器的设计[1]。
相对于鼓式制动器盘式制动器具有以下优点:
(1)热稳定性好;
(2)水稳定性好;
(3)制动稳定性好;
(4)制动力矩与汽车前进和后退等行驶状态无关;
(5)在输出同样大小的制动力矩的条件下,盘式制动器的结构尺寸和质量比鼓式制动器的要小;
(6)盘式制动器的摩擦衬块比鼓式制动器的摩擦衬片在磨损后更易更换,结构也比较简单,维修、保养容易;
(7)制动盘与摩擦衬块间的间隙小,一次缩短了油缸活塞的操作时间,并使驱动机构的力传动比有增大的可能;
(8)制动盘的热膨胀量不会像制动鼓热膨胀那样引起制动踏板行程损失,这也使得间隙自动调整机构的设计可以简化;
(9)易于构成多回路制动驱动系统,使系统有较好的可靠性与安全性,以保证汽车在任何车速下各车轮都能均匀一致地平稳制动;
(10)能方便地实现制动器磨损报警,能及时地更换摩擦衬片。
作为一款微型车,出于制造维修成本以及制动效能等方面考虑,采用前盘后鼓式制动器。
鼓式制动器可按其制动蹄的受力情况分类(见图2.1),它们的制动效能、制动鼓的受力平衡状况以及车轮旋转方向对制动效能的影响均不同[2]。
(a) (b) (c)
(d) (e) (f)
图2.1鼓式制动器简图
(a)领从蹄式(凸轮张开);(b)领从蹄式(制动轮缸张开);(c)双领蹄式(非双向,平衡式);
(d)双向双领蹄式;(e)单向增力式;(f)双向增力式
制动蹄按其张开时的转动方向和制动鼓的旋转方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。
领从蹄式制动器的效能和效能稳定性,在各式制动器中居中游;前进、倒退行驶的制动效果不变;结构简单,成本低;便于附装驻车制动驱动机构;易于调整蹄片之间的间隙。因此得到广泛的应用,特别是用于乘用车和总质量较小的商用车的后轮制动器[2]。路宝总质量较小,因此采用结构简单,成本低的领从蹄式鼓式制动器。
按摩擦副中的固定摩擦元件的结构来分,盘式制动器分为钳盘制动器和全盘制动器两大类。全盘制动器的固定摩擦元件和旋转元件均为圆盘形,制动时各盘摩擦便面全部接触。这种制动器的散热性差,为此,多采用油冷式,结构复杂。
前盘式制动器按制动钳的结构形式可分为固定钳盘和浮动钳盘两种。其中浮动前盘式制动器只在制动盘的一侧装油缸,其结构简单,造价低廉,易于布置,结构尺寸紧凑,可将制动器进一步移近轮毂。因此作为路宝车前制动器采用浮动前盘式制动器。
2.2 制动驱动机构的结构型式的方案比较选择
根据制动力源的不同,制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式和气压-液压式的区别,如表2.1所示。
表2.1 制动驱动机构的结构型式
制动力源
力的传递方式
用途
型式
制动力源
工作介质
型式
工作介质
简单制动系
(人力制动系)
司机体力
机械式
杆系或钢丝绳
仅限于驻车制动
液压式
制动液
部分微型汽车的行车制动
动力制动系
气压动力
制动系
发动机动力
空气
气压式
空气
中、重型汽车的行车制动
气压-液压式
空气、制动液
液压动力
制动系
制动液
液压式
制动液
伺服制动系
真空伺服
制动系
司机体力与发动机动力
空气
液压式
制动液
轿车,微、轻、中型汽车的行车制动
气压
制动系
空气
液压伺服
制动系
制动液
简单制动单靠驾驶员施加的踏板力或手柄力作为制动力源,故亦称人力制动。其中,又分为机械式和液压式两种。机械式完全靠杆系传力,由于其机械效率低,传动比小,润滑点多,且难以保证前、后轴制动力的正确比例和左、右轮制动力的均衡,所以在汽车的行车制动装置中已被淘汰。但因其结构简单,成本低,工作可靠(故障少),还广泛地应用于中、小型汽车的驻车制动装置中[2]。
液压式简单制动(通常简称为液压制动)用于行车制动装置。液压制动的优点是:作用滞后时间较短(0.1~0.3s);工作压力高(可达10~20MPa),因而轮缸尺寸小,可以安装在制动器内部,直接作为制动蹄的张开机构(或制动块的压紧机构),而不需要制动臂等传动件,使之结构简单,质量小;机械效率较高(液压系统有自润滑作用)。液压制动的主要缺点是过度受热后,部分制动液汽化,在管路中形成气泡,严重影响液压传输,使制动系效能降低,甚至完全失效。液压制动曾广泛应用在轿车、轻型货车及一部分中型货车上[2]。
动力制动即利用发动机的动力转化而成,并表现为气压或液压形式的势能作为汽车制动的全部力源。驾驶员施加于踏板或手柄上的力,仅用于回路中控制元件的操纵。因此,简单制动中的踏板力和踏板行程之间的反比例关系,在动力制动中便不复存在,从而可使踏板力较小,同时又有适当的踏板行程。
气压制动是应用最多的动力制动之一。其主要优点为操纵轻便、工作可靠、不易出故障、维修保养方便;此外,其气源除供制动用外,还可以供其它装置使用。其主要缺点是必须有空气压缩机、贮气筒、制动阀等装置,使结构复杂、笨重、成本高;管路中压力的建立和撤除都较慢,即作用滞后时间较长(0.3s~0.9s),因而增加了空驶距离和停车距离,为此在制动阀到制动气室和贮气筒的距离过远的情况下,有必要加设气动的第二级元件——继动阀(亦称加速阀)以及快放阀;管路工作压力低,一般为0.5MPa~0.7MPa,因而制动气室的直径必须设计得大些,且只能置于制动器外部,再通过杆件和凸轮或楔块驱动制动蹄,这就增加了簧下质量;制动气室排气有很大噪声。气压制动在总质量8t以上的货车和客车上得到广泛应用。由于主、挂车的摘和挂都很方便,所以汽车列车也多用气压制动[3]。
用气压系统作为普通的液压制动系统主缸的驱动力源而构成的气顶液制动,也是动力制动。它兼有液压制动和气压制动的主要优点,因气压系统管路短,作用滞后时间也较短。但因结构复杂、质量大、成本高,所以主要用在重型汽车上。
全液压动力制动,用发动机驱动液压泵产生的液压作为制动力源,有闭式(常压式)与开式(常流式)两种。
开式(常流式)系统在不制动时,制动液在无负荷情况下由液压泵经制动阀到贮液罐不断循环流动;而在制动时,则借阀的节流而产生所需的液压并传入轮缸。
闭式回路因平时总保持着高液压,对密封的要求较高,但对制动操纵的反应比开式的快。在液压泵出故障时,开式的即不起制动作用,而闭式的还有可能利用蓄能器的压力继续进行若干次制动。
全液压动力制动除了有一般液压制动系的优点以外,还有制动能力强、易于采用制动力调节装置和防滑移装置,即使产生汽化现象也没有什么影响等好处。但结构相当复杂,精密件多,对系统的密封性要求也较高,目前应用并不广泛。
各种形式的动力制动在动力系统失效时,制动作用即全部丧失。
伺服制动的制动能源是人力和发动机并用。正常情况下其输出工作压力主要由动力伺服系统产生,在伺服系统失效时,还可以全靠人力驱动液压系统以产生一定程度的制动力,因而从中级以上的轿车到重型货车,都广泛采用伺服制动。
按伺服力源不同,伺服制动有真空伺服制动、空气伺服制动和液压伺服制动三类。
真空伺服制动与空气伺服制动的工作原理基本一致,但伺服动力源的相对压力不同。真空伺服制动的伺服用真空度(负压)一般可达0.05MPa~0.07MPa;空气伺服制动的伺服气压一般能达到0.6MPa~0.7MPa,故在输出力相同的条件下,空气伺服气室直径比真空伺服气室的小得多。但是,空气伺服系统其它组成部分却较真空伺服系统复杂得多。真空伺服制动多用于总质量在1.1t~1.35t以上的轿车和装载质量在6t以下的轻、中型货车,空气伺服制动则广泛用于装载质量为6t~12t的中、重型货车,以及少数几种高级轿车上。本次设计采用真空助力式伺服制动系统。
2.3 制动管路的多回路系统
为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应是双管路的。应将汽车的全部行车制动器的液压或气压管路分成两个或更多个相互独立的回路,以便当一个回路失效后,其他完好的回路仍能可靠地工作。根据GB 7258—2004规定制动系统部分管路失效的情况下,应能有一定的制动力。
(a) (b) (c) (d) (e)
1—双腔制动主缸;2—双回路系统的一个分路;3—双回路的另一分路
图2.2双轴汽车液压双回路系统的5种分路方案
图2.2为双轴汽车的液压式制动驱动机构的双回路系统的五种分路方案图。选择分路方案时主要是考虑其制动效能的损失程度、制动力的不对称情况和回路系统的复杂程度等。
图2.2(a)为前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,简称Ⅱ型。其特点是管路布置最为简单,可与传统的单轮缸(或单制动气室)鼓式制动器相配合,成本较低。在各类汽车上都有采用,但在货车上用得最广泛。这一分路方案若后轮制动管路失效,则一旦前轮抱死就会失去转弯制动能力。对于前驱动的轿车,当前轮管路失效而仅由后轮制动时,制动效能将显著降低并小于正常情况下的一半,另外由于后桥负荷小于前轴,则过大的踏板力会使后轮抱死导致汽车甩尾。
图2.2(b)为前、后轮制动管路呈对角连接的两个独立的回路系统,即前轴的一侧车轮制动器与后桥的对侧车轮制动器同属一个回路,称交叉型,简称X型。其特点是结构也很简单,一回路失效时仍能保持50%的制动效能,并且制动力的分配系数和同步附着系数没有变化,保证了制动时与整车负荷的适应性。此时前、后各有一侧车轮有制动作用使制动力不对称,导致前轮将朝制动起作用车轮的一侧绕主销转动,使汽车失去方向稳定性。所以具有这种分路方案的汽车,其主销偏移距应取负值(至20mm),这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性,所以多用于中、小型轿车。
图2.2(c)的每侧前制动器的半数轮缸与全部后制动器轮缸构成一个独立的回路;而两前制动器的另半数轮缸构成另一回路。可看成是一轴半对半个轴的分路型式,简称HI型。
图2.2(e)的两个独立的回路均由每个前、后制动器的半数缸所组成,即前、后半个轴对前、后半个轴的分路型式。简称HH型。这种型式的双回路系统的制动效能最好。
HI,LL,HH型的结构均较复杂。LL型与HH型在任一回路失效时,前、后制动力比值均与正常情况下相同,剩余总制动力LL型可达正常值的80%而HH型约为50%左右。HI型单用回路3(见图2.2(c),即一轴半)时剩余制动力较大,但此时与LL型一样,在紧急制动时后轮极易先抱死。
(3.39)
鼓式制动器的比能量耗损率以不大于1.8W/mm2为宜,但当制动初速度低于式(3.40)下面所规定的值时,则允许略大于1.8W/mm2,盘式制动器比能量耗损率以不大于6.0W/mm2为宜。比能量耗散率过高,不仅会加速制动衬片的磨损,而且可能引起制动鼓或盘的龟裂。
W/mm2 W/mm2
因此,符合磨损和热的性能指标要求。
3.6 制动器的热容量和温升的核算
应核算制动器的热容量和温升是否满足如下条件
(3.40)
式中:——各制动鼓的总质量;
——与各制动鼓相连的受热金属件(如轮毂、轮辐、轮辋等)的总质量;
——制动鼓材料的比热容,对铸铁c=482 J/(kg•K),对铝合金c=880 J/(kg•K);
——与制动鼓(盘)相连的受热金属件的比热容;
——制动鼓(盘)的温升(一次由=30km/h到完全停车的强烈制温升不应超过15℃);
L——满载汽车制动时由动能转变的热能,因制动过程迅速,可以认为制动产生的热能全部为前、后制动器所吸收,并按前、后轴制动力的分配比率分配给前、后制动器,即
(3.41)
式中 ——满载汽车总质量;
——汽车制动时的初速度;
——汽车制动器制动力分配系数。
盘式制动器:
鼓式制动器:
由以上计算校核可知符合热容量和温升的要求。
3.7 驻车制动计算
图3.8为汽车在上坡路上停驻时的受力情况,由此可得出汽车上坡停驻时的后轴车轮的附着力为:
(3.42)
同样可求出汽车下坡停驻时的后轴车轮的附着力为:
(3.43)
图3.8 汽车在坡路上停驻时的受力简图
根据后轴车轮附着力与制动力相等的条件可求得汽车在上坡路和下坡路上停驻时的坡度极限倾角,,即由
(3.44)
求得汽车在上坡时可能停驻的极限上坡路倾角为
(3.45)
汽车在下坡时可能停驻的极限下坡路倾角为
(3.46)
一般对轻型货车要求不应小于16%~20%,汽车列车的最大停驻坡度约为12%左右。
为了使汽车能在接近于由上式确定的坡度为的坡路上停驻,则应使后轴上的驻车制动力矩接近于由所确定的极限值 (因),并保证在下坡路上能停驻的坡度不小于法规规定值。
单个后轮驻车制动器的制动上限为
N•m
3.8 制动器主要零件的结构设计
3.8.1 制动鼓
制动鼓应具有非常好的刚性和大的热容量,制动时温升不应超过极限值。制动鼓材料应与摩擦衬片相匹配,以保证具有高的摩擦系数并使工作表面磨损均匀。
制动鼓相对于轮毂的对中是圆柱表面的配合来定位,并在两者装配紧固后精加工制动鼓内工作表面,以保证两者的轴线重合。两者装配后还需进行动平衡。其许用不平衡度对轿车为15N•cm~20 N•cm;对货车为30 N•cm~40 N•cm。微型轿车要求其制动鼓工作表面的圆度和同轴度公差<0.03mm,径向跳动量≤0.05mm,静不平衡度≤1.5N.cm。
制动鼓壁厚的选取主要是从其刚度和强度方面考虑。壁厚取大些也有利于增大其热容量,但试验表明,壁厚由ll mm增至20 mm时,摩擦表面的平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车为7mm~12mm;中、重型载货汽车为13mm~18mm。制动鼓在闭口一侧外缘可开小孔,用于检查制动器间隙。本次设计采用的材料是灰铸铁HT200厚为8mm。
3.8.2 制动蹄
轿车和轻型、微型货车的制动蹄广泛采用T型钢辗压或钢板冲压—焊接制成;大吨位货车的制动蹄则多用铸铁、铸钢或铸铝合金制成。制动蹄的断面形状和尺寸应保证其刚度好,但小型车钢板制的制动蹄腹板上有时开有一、两条径向槽,使蹄的弯曲刚度小些,以便使制动蹄摩擦衬片与鼓之间的接触压力均匀,因而使衬片磨损较为均匀,并减少制动时的尖叫声。重型汽车制动蹄的断面有工字形、山字形和Ⅱ字形几种。制动蹄腹板和翼缘的厚度,轿车的约为3—5mm;货车的约为5~8mm。摩擦衬片的厚度,轿车多用4.5~5mm;货车多在8mm以上。衬片可以铆接或粘接在制动蹄上,粘接的允许其磨损厚度较大,但不易更换衬片;铆接的噪声较小。
因此,本设计制动蹄采用热轧45号钢钢板冲压—焊接制成,制动蹄腹板和翼缘的厚度分别取5mm和4mm。
3.8.3 制动底板
制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制动底板承受着制动器工作时的制动反力矩,故应有足够的刚度。为此,由钢板冲压成形的制动底板都具有凹凸起伏的形状。刚度不足会导致制动力矩减小,踏板行程加大,衬片磨损也不均匀。
因此,本设计制动底板采用热轧45号钢钢板冲压成形,制动底板的厚度取3mm。
3.8.4 制动蹄的支承
二自由度制动蹄的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。例如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH 370—12)或球墨铸铁(QT 400—18)件。青铜偏心轮可保持制动蹄腹板上的支承孔的完好性并防止这些零件的腐蚀磨损。
具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时在制动底板上附加一压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。
本设计为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,采用支承销。
3.8.5 制动轮缸
是液压制动系采用的活塞式制动蹄张开机构,其结构简单,在车轮制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸筒为通孔,需搪磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插入槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处的橡胶皮碗密封。多数制动轮缸有两个等直径活塞;少数有四个等直径活塞;双领蹄式制动器的两蹄则各用一个单活塞制动轮缸推动。由于采用的是领从蹄式的制动器,缸体材料采用HT250的铸铁,两个活塞推动。
3.8.6 制动盘
制动盘一般由珠光体灰铸铁制成,其结构形状有平板形和礼帽形两种。后一种的圆柱部分长度取决于布置尺寸。为了改善冷却,有的钳盘式制动器的制动盘铸成中间有径向通风槽的双层盘,可大大增加散热面积,但盘的整体厚度较大。制动盘的工作表面应光滑平整。两侧表面不平行度不应大于 0.008mm,并且盘面摆差不应大于 0.1mm。本设计制动盘厚度10mm且考虑为经济车型选用实心盘。
3.8.7 制动钳
制动钳由可锻铸铁 K TH370—12 或球墨铸铁 QT400—18 制造, 也有用轻合金制造的,可做成整体的,也可做成两个由螺栓连接。其外缘留有开口,以便不必拆下制动钳便可检查或更换制动块。制动钳体应有高的强度和刚度。一般多在钳体中加工出制动油缸,也有将单独制造的油缸装嵌入钳体中的。为了减少传给制动液的热量,多将杯形活塞的开口端顶靠制动块的背板。活塞由铸铝合金或钢制造。为了提高耐磨损性能,活塞的工作表面进行镀铬处理。
3.8.8 制动块
制动块由背板和摩擦衬块构成,两者直接压嵌在一起。衬块多为扇面形,也有矩
形、正方形或长圆形的。活塞应能压住尽量多的制动块面积,以免衬块发生卷角而引
起尖叫声。制动块背板由钢板制成。许多盘式制动器装有衬块磨损达极限时的警报装,以便及时更换摩擦衬片。制动块的厚度取14mm。
3.8.9 摩擦材料
制动摩擦材料应具有高而稳定的摩擦系数,抗热衰退性能好,不能在温度升到某一数值后摩擦系数突然急剧下降;材料的耐磨性好,吸水率低,有较高的耐挤压和耐冲击性能;制动时不产生噪声和不良气味,应尽量采用少污染和对人体无害的材料。
目前在制动器中广泛采用着模压材料,它是以石棉纤维为主并与树脂粘结剂、调整摩擦性能的填充剂(由无机粉粒及橡胶、聚合树脂等配成)与噪声消除剂(主要成分为石墨)等混合后,在高温下模压成型的。模压材料的挠性较差,故应按衬片规格模压,其优点是可以选用各种不同的聚合树脂配料,使衬片具有不同的摩擦性能和其他性能。
各种摩擦材料摩擦系数的稳定值约为0.3~0.5,少数可达0.7。设计计算制动器时一般取0.3~0.35。选用摩擦材料时应注意,一般说来,摩擦系数愈高的材料其耐磨性愈差[8]。
3.8.10 制动摩擦衬片
在GB 5763-1998《汽车用制动器衬片》中,将制动摩擦衬片按照用途分成4类,其中,第1类做为驻车制动器使用;第2类为微型、轻型汽车鼓式制动器使用;第3类为中重型汽车的鼓式制动器使用;第4类为盘式制动器使用[17]。其具体摩擦性能见表3.4
表3.4 汽车制动器摩擦衬片的摩擦性能
类别
项 目
试验温度
100℃
150℃
200℃
250℃
300℃
350℃
1
类
摩擦系数
0.30~0.70
0.25~0.70
0.20~0.70
——
——
——
指定摩擦系数的允许偏差
±0.10
±0.12
±0.12
——
——
——
磨损率(V),10-7cm3/(N•m)
≤1.00
≤2.00
≤3.00
——
——
——
2
类
摩擦系数
0.25~0.65
0.25~0.70
0.20~0.70
0.15~0.70
——
——
指定摩擦系数的允许偏差
±0.08
±0.10
±0.12
±0.12
——
——
磨损率(V),10-7cm3/(N•m)
≤0.50
≤0.70
≤1.00
≤2.00
——
——
3
类
摩擦系数
0.25~0.65
0.25~0.70
0.25~0.70
0.20~0.70
0.15~0.70
——
指定摩擦系数的允许偏差
±0.08
±0.10
±0.12
±0.12
±0.14
——
磨损率(V),10-7cm3/(N•m)
≤0.50
≤0.70
≤1.00
≤1.50
≤3.00
——
4
类
摩擦系数
0.25~0.65
0.25~0.70
0.25~0.70
0.25~0.70
0.25~0.70
0.20~0.70
指定摩擦系数的允许偏差
±0.08
±0.10
±0.12
±0.12
±0.14
±0.14
磨损率(V),10-7cm3/(N•m)
≤0.50
≤0.70
≤1.00
≤1.50
≤2.50
≤3.50
3.8.11 制动器间隙
制动鼓与摩擦衬片之间在未制动的状态下应有工作间隙,以保证制动鼓能自由转动。一般鼓式制动器的设定间隙为0.2~0.5mm,盘式制动器的为0.1~0.3mm;此间隙的存在会导致踏板或手柄的行程损失,因而间隙量应尽量小。考虑到在制动过程中摩擦副可能产生机械变形和热变形,因此制动器在冷却状态下应有的间隙应通过试验来确定。另外,制动器在工作过程中会因为摩擦衬片的磨损而加大,因此制动器必须设有间隙调整机构。
在制动轮缸上采取措施实现工作间隙的自动调整,如图3.14所示。用以限定不制动时制动蹄内极限位置的限位摩擦环1装在轮缸活塞2内端的环槽中或借矩形断面螺
纹旋装在活塞内端。限位摩擦环是一个有切槽的弹性金属环,压装入轮缸后与缸壁之
间的摩擦力可打400。活塞上的环槽或螺旋槽的宽度大于限位摩擦环厚度,
活塞相对于限位摩擦环的最大轴向位移量即为两者之间的间隙。间隙应等
于在制动器间隙设定的标准时,施行完全制动时所需的轮缸活塞行程[5]。
不制动时,制动蹄回位弹簧只能将制动蹄向内拉到轮缸活塞与限位摩擦环外端面接触为止,因为回位弹簧的拉力远远不足以克服摩擦限位环与缸壁间的摩擦力。此时如图3.9所示,间隙存在于活塞与限位摩擦环内端面之间
1—限位摩擦环;2—活塞;3—制动轮缸
图3.9制动鼓与蹄间隙的自动调整装置
制动时,轮缸活塞外移。若制动器间隙正好等于设定值,则当活塞移动到与限位摩擦环内端面接触(即间隙消失)时,制动器间隙应以消失,并且蹄鼓已压紧到足以产生最大制动力矩的程度。若制动器间隙有与种种原因增大到超过设定值时,则活塞外移到=0时仍不能实现完全制动。但只要轮缸液压达到0.8,即能将活塞连同限位摩擦环继续推出,直到实现完全制动。这样,在解除制动时,活塞随制动蹄向后移动到与处于新位置的限位摩擦环与缸壁之间这一不可逆转的轴向相对位移,补偿了制动器的过量间隙。
3.9 制动蹄支承销剪切应力计算
在计算得制动蹄片上的法向力,制动力矩及张开力后,可根据图求得支承销的支承力及支承销的剪切应力如下:
(3.47)
式中:——支承销的截面积。
也可以用下述的简化方法求得:如图3.10所示,假设制动蹄与制动鼓之间的作用力的合力作用点位于制动蹄摩擦衬片的工作表面上,其法向合力与支承销的反力分别平行,如图3.10所示。
对两蹄分别绕中心点取矩,得
(3.48)
图3.10 制动蹄支承销剪切应力计算图
一般来说,的值总要大于的值,故仅计算领蹄的支承销的剪切应力即可:
(3.49)
式中:见图3.10;
—— 支承销的截面积;
—— 摩擦系数;
——许用剪切应力。
由式(3.9)知:
因此由式(3.49)知
支承销采用45号钢制成,其许用剪切应力=25~45MPa[9],因此符合剪切应力要求。
3.10 本章小结
本章是全文的重点内容,首先根据汽车的一些数据参数对制动器的制动力分配系数,同步附着系数进行了设计计算。
在知道汽车的最大附着系数以后对车辆的制动强度,制动器最大制动力矩进行了分析,对制动器因数与制动蹄因数进行了介绍分析。
在有关的整车总布置参数和制动器的结构型式确定后,即可参考已有的同类等级汽车的同类制动器,对制动器的结构参数进行初选。
经过设计初步选取了制动鼓半径;制动蹄摩擦衬片包角及宽度;摩擦衬片起始角;张开力的作用线至制动器中心的距离;制动蹄支销中心的坐标位置与;制动盘的半径R;衬块的面积等制动器的基本参数。
经过对制动蹄摩擦面的压力分布规律及径向变形规律的分析,结合GB 7258-2004中对汽车制动性能的要求,在求出制动力矩后,计算出了张开力。而后对制动器的制动器因数进行了计算,对摩擦衬片的磨损特性进行了校核。对制动器的热容量和升温进行了核
展开阅读全文