资源描述
稳定同位素地球化学稳定同位素地球化学储雪蕾Institute of Geology and Geophysics Institute of Geology and Geophysics Chinese Academy of SciencesChinese Academy of Sciences(联系电话:联系电话:8299841782998417;E-mailE-mail:))(第一讲)(第一讲)I.I.稳定同位素基本原理稳定同位素基本原理 稳定同位素地球化学的诞生、发展离不开上个世纪3040年代两位著名的科学家:Harold Urey(Univ.of Chicago)和 Alfred Nier(Univ.of Minnesota)的贡献。1934年诺贝尔化学奖获得者Urey奠定了同位素取代的物理化学性质变化的理论基础,并把它用于地球科学。1946年他在英国皇家学会上发表了“The Thermodynamic Properties of Isotopic Substances”,并理论上预示CaCO3和H2O的氧同位素比值(18O/16O)只依赖于温度的变化,提出了在海洋古温度上的应用。他与Epstein、McCrea建立了第一个碳酸盐的氧同位素实验室。实现同位素分析始于质谱仪的发明与设计,Nier的贡献是最显著的。他设计和改进的Nier-型质谱仪一直是测定原子量的主要工具,也是测定重元素同位素的仪器,用于放射性同位素地质年代学和地球化学的研究。在他和他的同事测定轻元素的同位素组成时,发现了较大的变化。他们所测的灰岩比海水富集18O约3%,与Urey通过统计力学计算的分馏系数一致。因此,一门基于理论、实验和质谱分析技术的新学科稳定同位素地球化学诞生了。稳定同位素地球化学在地球科学中的应用:1)同位素地质温度计;2)示踪剂(包括确定物质来源,物理化学条件与地质过程机制,等)。测定稳定同位素比值主要用气体离子源的同位素质谱仪。采用双进样同位素比值质谱仪,由于属大型仪器、贵重,只有国家级科研院、所的实验室从事这方面测试与研究。本课程的内容主要是介绍稳本课程的内容主要是介绍稳定同位素地球化学原理与应用,定同位素地球化学原理与应用,重点介绍重点介绍C C、H H、O O、S S同位素。同位素。1同位素的基本概念同位素的基本概念同位素的分类同位素的分类:(1)放射性同位素:原子核不稳定,能自发进放射性同位素:原子核不稳定,能自发进行放射性衰变或核裂变,而转变为其它一类核素行放射性衰变或核裂变,而转变为其它一类核素的同位素称为放射性同位素。的同位素称为放射性同位素。(2)稳定同位素:原子核稳定,其本身不会自稳定同位素:原子核稳定,其本身不会自发进行放射性衰变或核裂变的同位素。发进行放射性衰变或核裂变的同位素。同位素的定义同位素的定义同位素定义:核内质子数相同而中子数不同的同同位素定义:核内质子数相同而中子数不同的同一类原子。一类原子。传统的稳定同位素非传统的稳定同位素本课程同位素效应同位素效应(Isotopeeffect)同位素比值(同位素比值(Isotoperatio):R=重同位素丰度重同位素丰度/轻同位素丰度轻同位素丰度同位素分馏系数(同位素分馏系数(Isotopefractionationfactor):A-B=RA/RB即即 值,值,表示某元素的同位素在两种物质表示某元素的同位素在两种物质(A和和B)之间的分馏的程度。)之间的分馏的程度。同位素分馏(同位素分馏(Isotopefractionation):同位素在不同物质或不同物相间分配比例同位素在不同物质或不同物相间分配比例不同的现象称之为同位素分馏。不同的现象称之为同位素分馏。值:值:样品的同位素比值相对于标准样品同位素比值样品的同位素比值相对于标准样品同位素比值的千分偏差的千分偏差()=(R样样R标标)/R标标)X1000=(R样样/R标标)-1)X1000R样样:样品的同位素比值:样品的同位素比值R标标:标准的同位素比值:标准的同位素比值 0表明样品相对标准富集重同位素表明样品相对标准富集重同位素 0表明样品相对标准亏损重同位素表明样品相对标准亏损重同位素=0表明样品与标准同位素比值相同表明样品与标准同位素比值相同稳定同位素标准稳定同位素标准2D/1H SMOWSMOW:Standard mean of ocean water(标准平均大洋水)18O/16O SMOWSMOW:Standard mean of ocean water(标准平均大洋水)PDB:Belemnitella Americana(美国北卡罗来纳州白垩系Pee Dee建造美洲似箭石)13C/12C PDB:Belemnitella Americana(美国北卡罗来纳州白垩系Pee Dee建造美洲似箭石)34S/32S CDT:美国亚利桑那州Canyon Diablo铁陨石中的陨硫铁(FeS)样品的值的计算需要引入一个标准。在对于样品的同位素组成进行比较时,必须采用同一的标准。国际选定的标准如下:稳定同位素标准稳定同位素标准D/H13C/12C15N/14N18O/16O34S/32SD13C15N18O34SVSMOWVPDBAIRVSMOW,VPDBVCDT1.5575 x 10-41.1237 x 10-23.677 x 10-32.0052 x 10-3,2.0672 x 10-34.5005 x 10-2NIST:National Institute of Standards and TechnologyIAEA:International Atomic Energy Agency同位素比值参考标准丰度比值鉴于原有的国际标准已用尽,国际原子能机构制做了下鉴于原有的国际标准已用尽,国际原子能机构制做了下述标准供使用。目前,发表论文可用原标准和现标准两种方述标准供使用。目前,发表论文可用原标准和现标准两种方式发表,但推荐用现标准(即式发表,但推荐用现标准(即V标准)发表。标准)发表。2同位素分馏机理同位素分馏机理从严格意义上讲,在周期表中所有元从严格意义上讲,在周期表中所有元素的不同种同位素由于其质量上存在差别,素的不同种同位素由于其质量上存在差别,在自然界的各种在自然界的各种物理物理,化学化学和和生物生物的反应的反应和过程中都会发生同位素分馏。这些反应和过程中都会发生同位素分馏。这些反应和过程包括:蒸发作用,扩散作用,吸附和过程包括:蒸发作用,扩散作用,吸附作用,化学反应,生物化学反应等等。作用,化学反应,生物化学反应等等。自然界存在三种类型的同位素分馏:平衡分馏平衡分馏(equilibriumfractionation)动力(学)分馏动力(学)分馏(kineticfractionation)非质量依赖分馏非质量依赖分馏(mass-independentfractionation)同位素分馏的类型同位素分馏的类型-主要由同位素取代所造成的气体、液体的分子和固体晶格中原子的振动能的差异造成-动能的差异与质量有关-体系趋向能态最低-共价键具有大的平衡分馏,而离子键平衡分馏小,通常可忽略例如:引自William Whites textbook(CornellUniv.)most imp.在 25C达到平衡时,CO2的18O/16O比值比 H2O 高。平衡分馏平衡分馏(Equilibrium fractionation)这什么会出现平衡分馏?这什么会出现平衡分馏?哪个化学键容易被打破?-重同位素的分子具有比轻同位素的分子低的零点能。-势能越高越容易脱离势阱,结合的键也越容易破裂。-重同位素具有比轻同位素更强的结合能,即化学键能大,或键强度高。为什么与温度有关?-轻、重同位素分子零点能差异随温度增加而减少。-键能在非常高的温度下趋近一致,所以同位素分馏系数将会趋近于1,即不产生分馏。zero point energy平衡分馏的温度依赖性平衡分馏的温度依赖性harmonic oscilllator modelharmonic oscilllator modeldatadata简谐振荡模型给出简谐振荡模型给出ln 高温下高温下与与T T2 2成反比,成反比,低温下与低温下与T T成反比。成反比。(T200 C)因此,在较低的温度上因此,在较低的温度上会有更严重的同位素分会有更严重的同位素分馏。馏。General rule of thumb:the heavy isotope will be concentrated in the phase in whichit is most strongly bound(or lowest energy state).Solidliquidgas,covalentionic,etc.Ex:18O in carbonates-heavily enriched in carbonate because O tightly bonded to small,highly charged C4+,vs.weaker H+-so D18Ocal-water=18Ocarb-18Owater=30Ex:quartz(SiO2)most enriched mineralLattice configuration(aragonite vs.calcite)plays a secondary role(D18Oarag-cal=0.5)Chemical substitutions in the lattice(ie.Ba instead of Ca)also have a small effect:D18OBa-cal-water=25(vs.30 for Ca-cal)富集规律(平衡分馏)富集规律(平衡分馏)规律:重同位素相对富集在化学键强或能态最低的物相中。同位素平衡分馏小结不同物质或物相间的同位素比值达到恒定不变时,即达到了同位素平衡状态,这种状态的分馏称为同位素平衡分馏。一旦同位素平衡状态建立后,只要体系的物理化学性质不变化,则在不同矿物或物相中同位素组成就维持不变,这是同位素平衡分馏的特点。同位素平衡分馏与路径、同位素交换速率、压力等都无关,而仅与温度有关。同位素平衡分馏的研究只考虑过程的始态与终态,对其演化过程及时间不予考虑。因此,同位素平衡分馏又称热力学分馏,是同位素地质温度计的理论依据。动力分馏动力分馏(Kinetic fractionation)起因:由速度、单向、不完全的反应或过程引起(包括生物为媒介的反应或过程)。例如:伴随着蒸发过程、扩散过程、分解反应过程,及光合 过程等等发生的同位素分馏都属于动力分馏。由于轻同位素取代具有相对高的势能,因此它相对由于轻同位素取代具有相对高的势能,因此它相对“活泼活泼”,优先反应。,优先反应。-例如,C-H键比C-D键容易破裂,它容易反应。-反应没有达到平衡时,轻同位素相对富集在产物中,而重同位素则在反应物中相对富集。-通常生物为媒介的氧化还原反应中会产生大的动力分馏,例如:光合作用生成的有机体贫13C,细菌还原产生的硫化物贫34S。考虑两个 CO2分子:12C16O2(质量数=12+2*16=44)13C16O2(质量数=13+2*16=45)假定为理想气体,动能相同时则:它们的速度比:如此,如此,12C16O2 比比13C16O2 扩散的速度要快扩散的速度要快 1.1%。不是理想气体,由于气体的碰撞使这两种分子运动速度的差异减小,分馏减小。气体分子的速度差异-理想气体的动能是相同的。-因此,重同位素与轻同位素的质量之不同是通过速度来补尝的,即同位素动力分馏小结 一些物理一些物理-化学(如蒸发、扩散、单向或未完成的化学化学(如蒸发、扩散、单向或未完成的化学反应等)过程和生物(如光合作用、呼吸作用和细菌硫反应等)过程和生物(如光合作用、呼吸作用和细菌硫酸盐还原等)过程中伴随发生的同位素分馏称之为同位酸盐还原等)过程中伴随发生的同位素分馏称之为同位素动力分馏。这些过程往往受素动力分馏。这些过程往往受化学反应动力学化学反应动力学控制,其控制,其造成的同位素分馏受造成的同位素分馏受扩散速度扩散速度或或反应速度反应速度控制,依赖于控制,依赖于路径路径、时间时间与与速度速度。生物参与的化学过程,一般同位素动力分馏明显,这生物参与的化学过程,一般同位素动力分馏明显,这在在C和和S同位素分馏的研究中占有重要位置。同位素分馏的研究中占有重要位置。Closed-and open-system fractionation瑞利同位素分馏瑞利同位素分馏(Rayleighisotopefractionation)推导:Thiemens and Heidenreich,1983;Theimens,1999(review)在陨石、大气光化学反应的产物中观察到了非质量依赖同位素分馏。非质量依赖分馏要通过三个或三个以上同位素的体系研究来确定,如16O、17O和18O体系;32S、33S、34S和36S体系。机制是光子的量子效应造成光化学反应,或自由基参与的化学反应。这些反应与同位素的质量无关。用途:天体化学、地球早期大气氧的增加、大气化学(如气溶胶)等。非质量依赖分馏非质量依赖分馏(Mass-independent fractionation)质量相关定则质量相关定则对于小的同位素分馏(20)的三同位体系的同位素比值是各种同位素质量倒数之差的函数。如分子氧(氧气)来讲有三种稳定同位素:16O16O、16O17O和16O18O,遵守质量相关定则的地球上物质普遍有 1717O/O/1818O O(1/32-1/33)/(1/32-1/34)(1/32-1/33)/(1/32-1/34)=0.516 =0.516即即 1717O=0.516O=0.516 1818O O地球样品普地球样品普遍满足遍满足质量相质量相关分馏线关分馏线或或质质量分馏线量分馏线。质量分馏线质量分馏线的的斜率在斜率在0.5000.500到到0.5260.526范围内。范围内。质量分馏线质量分馏线D D33S和和D D36S定义定义D D33S=(33S/32S)sample/(33S/32S)ref(34S/32S)sample/(34S/32S)ref0.515103D D36S=(36S/32S)sample/(36S/32S)ref(34S/32S)sample/(34S/32S)ref1.9103硫的质量相关和非质量相关同位素分馏硫的质量相关和非质量相关同位素分馏3同位素地质温度计原理同位素地质温度计原理 值值:()=(R样样/R标标)-1)X1000同位素分馏系数同位素分馏系数 与与 值的关系:值的关系:103ln A-B A-B=D D A-B 即即ln A-B与与A,B两种物质的两种物质的 值之差相关。值之差相关。同位素平衡分馏系数与温度的关系同位素平衡分馏系数与温度的关系:103ln=a/T2+b/T+c(T:K)其中其中a,b,c分别为常数。分别为常数。1)在一般低温下,)在一般低温下,a/T2可以忽略,简化:可以忽略,简化:103ln=b/T+c2)在高温下,)在高温下,b/T可以忽略,简化:可以忽略,简化:103ln=a/T2+c4同位素样品制备与质谱分析同位素样品制备与质谱分析AvacuumsystemforSOAvacuumsystemforSO2 2preparationpreparationSulfideminerals:suchaspyrite,galena,sphalerite,etc.oxidizingagent:CuO,Cu2O,orV2O5temperature:900to1100CSulfateminerals:suchasbarite,gypsum,anhydriteoxidizingagent:Cu2O,orV2O5+SiO2cover:Cutemperature:1100to1200CCeramicboatIronringSulfurisoiopicanalysisforSOSulfurisoiopicanalysisforSO2 2gasgasInionsource,SO2gasisionizedtopositivelychargedparticles,whichareacceleratedthroughavoltagegradient.TheSO2+ionbeampassesthroughamagneticfield,whichcausesseparationofvariousmassessuchas64(32S16O2)and66(34S16O2,34S18O16O).ThebeamcurrentsaremeasuredinFaradaycupsandcanberelatedtotheisotopicratiowhenthesampleandstandardgasesarecompared.GasBench IIMS+EATC/EAGeochemistry of Stable IsotopesOn-linesulfurisotopedeterminationusingEA-IRMSOn-linesulfurisotopedeterminationusingEA-IRMS-Anewmethodofrapidanalyses-AnewmethodofrapidanalysesThismothodisveryusefulininvestigationsonenvironment,ecologyandmineralresources.Advantages:1)impurity:wholerock,suchasblackshale;2)smallamountofsample:1mg(10mgSinsample);3)rapidly,continuously,andautomaticallyDisadvantage:loweranalyticalprecision:0.2-0.5for34SII.II.硫同位素地球化学硫同位素地球化学Threeprocessescausetheisotopefractionationbetweentwosubstancesinnature:Isotopeexchangereactions;Kineticprocessesduringachemicalreactionorphysicalprocess,suchasfreeze,evaporation,etc.;BiologicalprocessesThe34SdistributioninthenatureThe34Ssecularvariationsofmarineevaporites1.SulfurisotopevariationsingeologicalsystemsSulfurispresentinnearlyallnaturalenvironments:asaminorcomponentinigneousandmetamorphicrocks,mostlyassulfides;inthebiosphereandrelatedorganicsubstances,likecrudeoilandcoal;inoceanwaterassulfateandinmarinesedimentsasbothsulfideandsulfate.Itmaybeamajorcomponentinoredeposits,whereitisthedominantnon-metalassulfatesinevaporites.Inaddition,varioussulfideoredepositsareeconomicallyveryimportantsourcesforCu,Pb,Zn,Ag,andothermetals.Theseoccurrencescoverthewholetemperaturerangeofgeologicinterest.Sulfurisboundinvariousoxidationstates,fromsulfidestoelementalsulfur,tosulfates.Fromthesefactsitisquiteclearthatsulfurisofspecialinterestinstableisotopegeochemistry.TheThe 3434SdistributioninnatureSdistributioninnatureThecommonreferencereservoirs1)Meteoritic sulfur:0,suchasCanonDiablotroiliteMeteoritesapproximatelyhavethesame34SvaluesoftheEarthsbulk.Theironmeteoriteshaveanaverageisotopecompositionof0.20.2.Theaverage34Svalueofmid-oceanridgebasaltsis0.30.5.2)Sea-water sulfate:21,inmodernocean Geochemical processes,the most notable of which are oxidation and reduction,profoundly fractionate sulfur isotopes away from bulk-Earth values in geological systems.Oxidation processes produce species that are enriched in 34S relative to the starting material,whereas reduction produces species that are depleted in 34S.But,great isotope fractionations are related closely to a biological process,i.e.,bacterial sulfate reduction.The 34Sofsulfateinancientoceansasrecordedbymarineevaporitesequences(Claypooletal.1980)hasvariedfromalowofapproximately10duringPermianandTriassictimetoahighof35duringCambriantime.Becausetheisotopefractionationbetweenthesulfate-containingevaporiteandthesulfateinoceanwaterisalmostnegligible,theobservedtrendinevaporitesulfateshouldcloselyreflectfluctuationsinthesulfurisotopecompositionofmarinesulfatethroughgeologictime.TheThe 3434SsecularvariationsofmarineevaporitesSsecularvariationsofmarineevaporitesTheThe 3434SsecularSsecularvariationsvariationsofmarineevaporitesofmarineevaporitesChangesinthe34Sofmarinesulfateduringthegeologicpastmaybecausedbymajorchangesinthebudgetbetweentheindividualreservoirs:duringperiodsofhighbiologicalbiologicalsulfatesulfatereductionreduction(),whichshouldtakeplaceunderfavorablepaleogeographicconditions,the34Sofoceanwatershouldincrease.Incontrast,periodsofextendedweatheringweathering()introduceadditionallightcontinentalsulfurintotheoceanwhichdecreasesthe34Svalueofoceansulfate.Suchperiodsofextendedweatheringaregeologicallyplausibleinperiodsofhighhightectonic,mountain-buildingactivitytectonic,mountain-buildingactivity.Sulfur cycle Sulfur cycle in nature in natureWhilethepartialcyclebetweenoceanandevaporitesonlyinvolvessulfatetransferfromonereservoirtotheother,bacterialsulfatereduction,aswellastheweatheringofsulfidesfromargillaceoussediments,changethevalencestateofthesulfur.Therefore,duringaperiodwithincreasedrateofoneofthesetwoprocesses,appreciableamountseitheroforganiccompoundsoroffreeatmosphericoxygenfreeatmosphericoxygenareneeded.Especiallyinthelattercase,oxygenconsumptionoxygenconsumptionduringweatheringisappreciable.2.FactorscontrollingsulfurisotopefractionationIsotopeequilibriumfractionation:equilibriumfractionationfactorandisotopegeothermometerIsotopekineticfractionationIsotopefractionationduringbacterialsulfatereductionRayleighisotopefractionationThe fractionation factor(a)is defined as theratio of the numbers of any two isotopes in onechemical compound A divided by the correspondingratioforanotherchemicalcompoundB:A-B=RA/RBwhereRis34S/32S.Thisequationcanberecastintermsofvaluesas A-B=(1+A/1000)/(1+B/1000)=(1000+A)/(1000+B)Valuesofaaretypicallynearunity,withvariationsnormallyinthethirddecimalplace(1.00 x).ThevalueD Da-bisdefinedas D Da-b=A-BBecause1000ln(1.00 x)isapproximatelyequaltox,D Da-b1000ln A-B.Example:Foranisotopeexchangereaction32SO42-+H234S=34SO42-+H232Stheequilibriumfractionationfactorbetweensulfateandsulfide(i.e.,sulfate-sulfide)isabout1.075at25C(TudgeandThode1950).How to obtain equilibrium isotopic fractionation How to obtain equilibrium isotopic fractionation factorfactor(three ways):(three ways):(1)experimentaldetermination;(2)theoreticalestimationusingcalculatedbondstrengthsorstatisticalmechanicalcalculationsbasedondataonvibrationalfrequenciesofcompounds;(3)analysisofnaturalsamplesforwhichindependentestimatesoftemperatureareavailable.1)themagnitudeoffractionationfactordependsprimarilyon temperature,becoming smaller with increasingtemperature;2)wheninequilibrium,sulfurspeciesofhighervalence(i.e.,more oxidized)trend to be more enriched in theheavierisotopes,suchthat 3434S SSO4(andsulfateminerals)SO4(andsulfateminerals)3434S SSO2SO2 3434S SSSSSH2S(andsulfideminerals)H2S(andsulfideminerals)3)thefractionationfactorsbetweensulfatemineralsandSO42-are quite small,but those among some sulfidemineralsandaqueoussulfidesareverysignificant.SulfurisotopicfeaturesofSulfurisotopicfeaturesofequilibriumfractionation:equilibriumfractionation:SulfurisotopeSulfurisotopegeothermometrygeothermometrySulfurisotopegeothermometryistypicallybasedontheisotopicpartitioningbetweentwosulfur-bearingminerals,foranexample,bariteandpyrite.Anequationtocalculatethetemperaturerecordedbyacoexistingpairofbarite(Ba)andpyrite(Py)canderivedasfollows:1000ln Ba-PyD DBa-Py=34SBa-34SPy(1)Thus,D DBa-Py1000ln Ba-H2S-1000ln Py-H2S(2)SubstitutingfromtheaboveTableyieldsD DBa-Py=(6.463x106)/T2+0.56(0.40 x106)/T2=(6.063x106)/T2+0.56(3)withTinK.SolvingforT,andconvertingto Cyields:T(C)=(6.063x106/(D DBa-Py-0.56)1/2-273.15(4)Forexample,foramineralpairwith 34SBa=21.0and 34SPy=5.1,atemperatueof356 CiscalculatedusingEquation(4).Isotope kinetic fractionationIsotope kinetic fractionationDuring nonequilibrium,unidirectional chemical reactions,thefractionationofsulfurisotopesarisesfromthefactthatchemicalreactionrates are mass dependent and that one isotopic species reacts morerapidly than another.In general,the molecules containing the lighterisotopewillhavethefasterreactionrate.Consequently,theproducttendstobeenrichedinthelighterisotope.Forexample,oxidationofsulfidetosulfatecanbeconsideredastwoseparatereactionswithdifferentrateconstants:k1H232S 32SO42-k2H234S 34SO42-Theratiooftworateconstantsk1/k2isequaltothekinetic isotopic effect,i.e.,kinetic fractionation factor,=k1/k2.Sulfur isotope kinetic fractionationSulfur isotope kinetic fractionation1)Low-temperature oxidative alteration of sulfide minerals to sulfate minerals:Isotopekineticeffectiscommonlynegligible,i.e.,34Sproduct(sulfate)34Sreactant(sulfide)2)Thermochemical reduction of sulfate due to interaction with organic matter:Thekineticfractionationwasless10duringthisreduction.Bacterial sulfate reduction-isotope kinetic effectsBacterial sulfate reduction-isotope kinetic effectsThefractionationofsulfurisotopesbetweensulfateandsulfideduringbacterialsulfatereductionisakineticallycontrolledprocessinwhich34Sisenrichedinthesulfaterelativetothesulfide.Thesulfate-reducingbacteriamorereadilymetabolize32Srelativeto34S.Thus,the34S of theresidualaqueous sulfateincrease duringthereactionprogress.The fractionation associated with bacterial sulfate reduction(1000ln aSO4-H2S)typicallyrangesfrom15to60(GoldhaberandKaplan1975)inmarine settings,compared t
展开阅读全文