1、2017年全国统一高考数学试卷(文科)(新课标)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)设集合A=1,2,3,B=2,3,4,则AB=()A1,2,3,4B1,2,3C2,3,4D1,3,42(5分)(1+i)(2+i)=()A1iB1+3iC3+iD3+3i3(5分)函数f(x)=sin(2x+)的最小正周期为()A4B2CD4(5分)设非零向量,满足|+|=|则()AB|=|CD|5(5分)若a1,则双曲线y2=1的离心率的取值范围是()A(,+)B(,2)C(1,)D(1,2)6(5分)如图,网格纸上小正方形的边长为1,
2、粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A90B63C42D367(5分)设x,y满足约束条件,则z=2x+y的最小值是()A15B9C1D98(5分)函数f(x)=ln(x22x8)的单调递增区间是()A(,2)B(,1)C(1,+)D(4,+)9(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩看后甲对大家说:我还是不知道我的成绩根据以上信息,则()A乙可以知道四人的成绩B丁可以知道四人的成绩C乙、丁可以知道对方的成绩D乙、丁可以
3、知道自己的成绩10(5分)执行如图的程序框图,如果输入的a=1,则输出的S=()A2B3C4D511(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()ABCD12(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MNl,则M到直线NF的距离为()AB2C2D3二、填空题,本题共4小题,每小题5分,共20分13(5分)函数f(x)=2cosx+sinx的最大值为 14(5分)已知函数f(x)是定义在R上的奇函数,当x(,0)时,f(x)=2x3+x
4、2,则f(2)= 15(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为 16(5分)ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B= 三、解答题:共70分解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17(12分)已知等差数列an的前n项和为Sn,等比数列bn的前n项和为Tn,a1=1,b1=1,a2+b2=2(1)若a3+b3=5,求bn的通项公式;(2)若T3=21,求S318(12分)如图,四棱锥PABCD中
5、,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90(1)证明:直线BC平面PAD;(2)若PCD面积为2,求四棱锥PABCD的体积19(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg箱产量50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较附:P(K2K)0.05
6、00.0100.001K3.8416.63510.828K2=20(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=(1)求点P的轨迹方程;(2)设点Q在直线x=3上,且=1证明:过点P且垂直于OQ的直线l过C的左焦点F21(12分)设函数f(x)=(1x2)ex(1)讨论f(x)的单调性;(2)当x0时,f(x)ax+1,求a的取值范围选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程22(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为cos=4(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求OAB面积的最大值选修4-5:不等式选讲23已知a0,b0,a3+b3=2证明:(1)(a+b)(a5+b5)4;(2)a+b2第3页(共3页)