1、2013年普通高等学校招生全国统一考试数学(全国新课标卷II)第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(2013课标全国,理1)已知集合Mx|(x1)24,xR,N1,0,1,2,3,则MN()A0,1,2 B1,0,1,2 C1,0,2,3 D0,1,2,32(2013课标全国,理2)设复数z满足(1i)z2i,则z()A1i B1I C1i D1i3(2013课标全国,理3)等比数列an的前n项和为Sn.已知S3a210a1,a59,则a1()A B C D4(2013课标全国,理4)已知m,n为异面直线,m平面,n平面.直线l满足
2、lm,ln,l,l,则()A且l B且lC与相交,且交线垂直于l D与相交,且交线平行于l5(2013课标全国,理5)已知(1ax)(1x)5的展开式中x2的系数为5,则a()A4 B3 C2 D16(2013课标全国,理6)执行下面的程序框图,如果输入的N10,那么输出的S()A BC D7(2013课标全国,理7)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()8(2013课标全国,理8)设alog36,blog510,clog714,则()Ac
3、ba Bbca Cacb Dabc9(2013课标全国,理9)已知a0,x,y满足约束条件若z2xy的最小值为1,则a()A B C1 D210(2013课标全国,理10)已知函数f(x)x3ax2bxc,下列结论中错误的是()Ax0R,f(x0)0B函数yf(x)的图像是中心对称图形C若x0是f(x)的极小值点,则f(x)在区间(,x0)单调递减D若x0是f(x)的极值点,则f(x0)011(2013课标全国,理11)设抛物线C:y22px(p0)的焦点为F,点M在C上,|MF|5,若以MF为直径的圆过点(0,2),则C的方程为()Ay24x或y28x By22x或y28xCy24x或y21
4、6x Dy22x或y216x12(2013课标全国,理12)已知点A(1,0),B(1,0),C(0,1),直线yaxb(a0)将ABC分割为面积相等的两部分,则b的取值范围是()A(0,1) B C D第卷本卷包括必考题和选考题两部分,第13题第21题为必考题,每个试题考生都必须做答。第22题第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分13(2013课标全国,理13)已知正方形ABCD的边长为2,E为CD的中点,则_.14(2013课标全国,理14)从n个正整数1,2,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n_.15(2013课标全国,理1
5、5)设为第二象限角,若,则sin cos _.16(2013课标全国,理16)等差数列an的前n项和为Sn,已知S100,S1525,则nSn的最小值为_三、解答题:解答应写出文字说明,证明过程或演算步骤17(2013课标全国,理17)(本小题满分12分)ABC的内角A,B,C的对边分别为a,b,c,已知abcos Ccsin B.(1)求B;(2)若b2,求ABC面积的最大值18(2013课标全国,理18)(本小题满分12分)如图,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点,AA1ACCB.(1)证明:BC1平面A1CD;(2)求二面角DA1CE的正弦值19(2013课标全
6、国,理19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示经销商为下一个销售季度购进了130 t该农产品以X(单位:t,100X150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X100,11
7、0),则取X105,且X105的概率等于需求量落入100,110)的频率),求T的数学期望20(2013课标全国,理20)(本小题满分12分)平面直角坐标系xOy中,过椭圆M:(ab0)右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上两点,若四边形ACBD的对角线CDAB,求四边形ACBD面积的最大值21(2013课标全国,理21)(本小题满分12分)已知函数f(x)exln(xm)(1)设x0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m2时,证明f(x)0.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一
8、题计分,做答时请写清题号22(2013课标全国,理22)(本小题满分10分)选修41:几何证明选讲如图,CD为ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆(1)证明:CA是ABC外接圆的直径;(2)若DBBEEA,求过B,E,F,C四点的圆的面积与ABC外接圆面积的比值23(2013课标全国,理23)(本小题满分10分)选修44:坐标系与参数方程已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t与t2(02),M为PQ的中点(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为的函数,并判断M的轨
9、迹是否过坐标原点24(2013课标全国,理24)(本小题满分10分)选修45:不等式选讲设a,b,c均为正数,且abc1,证明:(1)abbcac;(2).2013年普通高等学校招生全国统一考试数学(全国新课标卷II)第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1答案:A解析:解不等式(x1)24,得1x3,即Mx|1x3而N1,0,1,2,3,所以MN0,1,2,故选A.2答案:A解析:1i.3 答案:C解析:设数列an的公比为q,若q1,则由a59,得a19,此时S327,而a210a199,不满足题意,因此q1.q1时,S3a1q10a
10、1,q10,整理得q29.a5a1q49,即81a19,a1.4答案:D解析:因为m,lm,l,所以l.同理可得l.又因为m,n为异面直线,所以与相交,且l平行于它们的交线故选D.5答案:D解析:因为(1x)5的二项展开式的通项为(0r5,rZ),则含x2的项为ax(105a)x2,所以105a5,a1.6答案:B解析:由程序框图知,当k1,S0,T1时,T1,S1;当k2时,;当k3时,;当k4时,;当k10时,k增加1变为11,满足kN,输出S,所以B正确7 答案:A解析:如图所示,该四面体在空间直角坐标系Oxyz的图像为下图:则它在平面zOx上的投影即正视图为,故选A.8答案:D解析:根
11、据公式变形,因为lg 7lg 5lg 3,所以,即cba.故选D.9答案:B解析:由题意作出所表示的区域如图阴影部分所示,作直线2xy1,因为直线2xy1与直线x1的交点坐标为(1,1),结合题意知直线ya(x3)过点(1,1),代入得,所以.10答案:C解析:x0是f(x)的极小值点,则yf(x)的图像大致如下图所示,则在(,x0)上不单调,故C不正确11答案:C解析:设点M的坐标为(x0,y0),由抛物线的定义,得|MF|x05,则x05.又点F的坐标为,所以以MF为直径的圆的方程为(xx0)(yy0)y0.将x0,y2代入得px084y00,即4y080,所以y04.由2px0,得,解之
12、得p2,或p8.所以C的方程为y24x或y216x.故选C.12 答案:B第卷本卷包括必考题和选考题两部分,第13题第21题为必考题,每个试题考生都必须做答。第22题第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分13答案:2解析:以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,如图所示,则点A的坐标为(0,0),点B的坐标为(2,0),点D的坐标为(0,2),点E的坐标为(1,2),则(1,2),(2,2),所以.14答案:8解析:从1,2,n中任取两个不同的数共有种取法,两数之和为5的有(1,4),(2,3)2种,所以,即,解得n8.15答案:解析:由
13、,得tan ,即sin cos .将其代入sin2cos21,得.因为为第二象限角,所以cos ,sin ,sin cos .16答案:49解析:设数列an的首项为a1,公差为d,则S1010a145d0,S1515a1105d25.联立,得a13,所以Sn.令f(n)nSn,则,.令f(n)0,得n0或.当时,f(n)0,时,f(n)0,所以当时,f(n)取最小值,而nN,则f(6)48,f(7)49,所以当n7时,f(n)取最小值49.三、解答题:解答应写出文字说明,证明过程或演算步骤17解:(1)由已知及正弦定理得sin Asin Bcos Csin Csin B又A(BC),故sin
14、Asin(BC)sin Bcos Ccos Bsin C由,和C(0,)得sin Bcos B,又B(0,),所以.(2)ABC的面积.由已知及余弦定理得4a2c2.又a2c22ac,故,当且仅当ac时,等号成立因此ABC面积的最大值为.18解:(1)连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1DF.因为DF平面A1CD,BC1平面A1CD,所以BC1平面A1CD.(2)由ACCB得,ACBC.以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA2,则D(1,1,0),E(0,2,1),A1(2,0,2),(1,1,0),(0,2,1
15、),(2,0,2)设n(x1,y1,z1)是平面A1CD的法向量,则即可取n(1,1,1)同理,设m是平面A1CE的法向量,则可取m(2,1,2)从而cosn,m,故sinn,m.即二面角DA1CE的正弦值为.19解:(1)当X100,130)时,T500X300(130X)800X39 000,当X130,150时,T50013065 000.所以(2)由(1)知利润T不少于57 000元当且仅当120X150.由直方图知需求量X120,150的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45 00053 00061 0
16、0065 000P0.10.20.30.4所以ET45 0000.153 0000.261 0000.365 0000.459 400.20解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),则,由此可得.因为x1x22x0,y1y22y0,所以a22b2.又由题意知,M的右焦点为(,0),故a2b23.因此a26,b23.所以M的方程为.(2)由解得或因此|AB|.由题意可设直线CD的方程为y,设C(x3,y3),D(x4,y4)由得3x24nx2n260.于是x3,4.因为直线CD的斜率为1,所以|CD|.由已知,四边形ACBD的面积.当n0时,S取得最大值,最大值为.所以四
17、边形ACBD面积的最大值为.21解:(1)f(x).由x0是f(x)的极值点得f(0)0,所以m1.于是f(x)exln(x1),定义域为(1,),f(x).函数f(x)在(1,)单调递增,且f(0)0.因此当x(1,0)时,f(x)0;当x(0,)时,f(x)0.所以f(x)在(1,0)单调递减,在(0,)单调递增(2)当m2,x(m,)时,ln(xm)ln(x2),故只需证明当m2时,f(x)0.当m2时,函数f(x)在(2,)单调递增又f(1)0,f(0)0,故f(x)0在(2,)有唯一实根x0,且x0(1,0)当x(2,x0)时,f(x)0;当x(x0,)时,f(x)0,从而当xx0时
18、,f(x)取得最小值由f(x0)0得,ln(x02)x0,故f(x)f(x0)x00.综上,当m2时,f(x)0.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22解:(1)因为CD为ABC外接圆的切线,所以DCBA,由题设知,故CDBAEF,所以DBCEFA.因为B,E,F,C四点共圆,所以CFEDBC,故EFACFE90.所以CBA90,因此CA是ABC外接圆的直径(2)连结CE,因为CBE90,所以过B,E,F,C四点的圆的直径为CE,由DBBE,有CEDC,又BC2DBBA2DB2,所以CA24DB2BC26DB2.而DC2DBDA3DB2,故过B,E,F,C四点的圆的面积与ABC外接圆面积的比值为.23解:(1)依题意有P(2cos ,2sin ),Q(2cos 2,2sin 2),因此M(cos cos 2,sin sin 2)M的轨迹的参数方程为(为参数,02)(2)M点到坐标原点的距离(02)当时,d0,故M的轨迹过坐标原点24解:(1)由a2b22ab,b2c22bc,c2a22ca,得a2b2c2abbcca.由题设得(abc)21,即a2b2c22ab2bc2ca1.所以3(abbcca)1,即abbcca.(2)因为,故2(abc),即abc.所以1.2013 全国新课标卷2理科数学 第13页