1、12.3.1角的平分线的性质(1)导学案 【学习目标】1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理2、能运用角的平分线性质定理解决简单的几何问题.3、极度热情、高度责任、自动自发、享受成功。学习重点:掌握角的平分线的性质定理学习难点: 角平分线定理的应用。【学习过程】一、自主学习1、复习思考什么是角的平分线?怎样画一个角的平分线?2如右图,ABAD,BCDC,沿着A、C画一条射线AE,AE就是BAD的角平分线,你知道为什么吗3.根据角平分仪的制作原理,如何用尺规作角的平分线?自学课本48页后,思考为什么要用大于MN的长为半径画弧?4OC是AOB的平分线,点P是射线OC上的任意
2、一点, 操作测量:取点P的三个不同的位置,分别过点P作PDOA,PE OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论 PDPE第一次第二次第三次5、命题:角平分线上的点到这个角的两边距离相等.题设:一个点在一个角的平分线上结论:这个点到这个角的两边的距离相等结合第4题图形请你写出已知和求证,并证明命题的正确性解后思考:证明一个几何命题的步骤有那些?6、用数学语言来表述角的平分线的性质定理:如右上图,OC是AOB的平分线,点P是 二、合作探究1、如图所示OC是AOB 的平分线,P 是OC上任意一点,问PE=PD?为什么?OABEDCP2、如图:在ABC中,C=90,AD是BAC的平分线,DEAB于E,F在AC上,BD=DF; 求证:CF=EB三、学以致用EDCBA在RtABC中,BD平分ABC, DEAB于E,则图中相等的线段有哪些?相等的角呢?哪条线段与DE相等?为什么?若AB10,BC8,AC6,求BE,AE的长和AED的周长。四、当堂检测如图,在ABC中,ACBC,AD为BAC的平分线,DEAB,AB7,AC3,求BE的EDCBA长五、课堂小结这节课你有什么收获呢?与你的同伴进行交流六、作业: