资源描述
12.3.1角的平分线的性质(1)导学案
【学习目标】
1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.
2、能运用角的平分线性质定理解决简单的几何问题.
3、极度热情、高度责任、自动自发、享受成功。
学习重点:掌握角的平分线的性质定理
学习难点: 角平分线定理的应用。
【学习过程】
一、自主学习
1、复习思考
什么是角的平分线?怎样画一个角的平分线?
2.如右图,AB=AD,BC=DC, 沿着A、C画一条射线AE,AE就是∠BAD的角平分线,你知道为什么吗
3.根据角平分仪的制作原理,如何用尺规作角的平分线?自学课本48页后,思考为什么要用大于MN的长为半径画弧?
4.OC是∠AOB的平分线,点P是射线OC上的任意一点,
操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论
PD
PE
第一次
第二次
第三次
5、命题:角平分线上的点到这个角的两边距离相等.
题设:一个点在一个角的平分线上
结论:这个点到这个角的两边的距离相等
结合第4题图形请你写出已知和求证,并证明命题的正确性
解后思考:证明一个几何命题的步骤有那些?
6、用数学语言来表述角的平分线的性质定理:
如右上图,∵OC是∠AOB的平分线,点P是
∴
二、合作探究
1、如图所示OC是∠AOB 的平分线,P 是OC上任意一点,问PE=PD?为什么?
O
A
B
E
D
C
P
2、如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF; 求证:CF=EB
三、学以致用
E
D
C
B
A
在Rt△ABC中,BD平分∠ABC, DE⊥AB于E,则
⑴图中相等的线段有哪些?相等的角呢?
⑵哪条线段与DE相等?为什么?
⑶若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长。
四、当堂检测
如图,在△ABC中,AC⊥BC,AD为∠BAC的平分线,DE⊥AB,AB=7㎝,AC=3㎝,求BE的E
D
C
B
A
长
五、课堂小结
这节课你有什么收获呢?与你的同伴进行交流
六、作业:
展开阅读全文