收藏 分销(赏)

定积分计算公式和性质.doc

上传人:可**** 文档编号:4749023 上传时间:2024-10-11 格式:DOC 页数:6 大小:221.04KB 下载积分:8 金币
下载 相关 举报
定积分计算公式和性质.doc_第1页
第1页 / 共6页
定积分计算公式和性质.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
第二节定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为 这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数 记为 图 5—10 从几何上看,也很显然。因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5—10) 定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为 图 5—11 另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可. 如果抛开上面物理意义,便可得出计算定积分的一般方法: 设函数在闭区间上连续,是的一个原函数,即,则 这个公式叫做牛顿—莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线和直线x=0、x=及y=0所围成图形面积A(5—12) 解这个图形的面积为 图 5—12 二、定积分的性质 设、在相应区间上连续,利用前面学过的知识,可以得到定积分以下几个简单性质: 性质1 被积函数的常数因子可以提到定积分符号前面,即(A为常数) 性质2函数的代数和的定积分等于它们的定积分的代数和,即 这个性质对有限个函数代数和也成立。 性质3积分的上、下限对换则定积分变号,即 以上性质用定积分的定义及牛顿-莱布尼兹公式均可证明,此处证明从略。 性质4如果将区间分成两个子区间及那么有 这个于区间分成有限个的情形也成立。 下面用定积分的几何意义,对性质4加以说明。 当a〈c<b时,从图5—13a可知,由y=f与和x=a x=b及x轴围成的曲边梯形面积: 图 5-13a 图 5—13b 因为所以 即性质4成立。 当a<b〈c时,即点c在外,由图5—13b可知, 显然,性质4也成立. 总之,不论c点在内还是外,性质4总是成立的. 例3求 例 4求 解= 例  5求 解 所以 例 6求 解 于是, 例 7 设求 解因为 所以 = == 例8 火车以v=72km/h的速度在平直的轨道上行驶,到某处需要减速停车。设火车以加速度a=—5m/刹车。问从开始刹车到停车,火车走了多少距离? 解首先要算出从开始刹车到停车经过时间。当时火车速度 刹车后火车减速行驶。其速度为当火车停住时,速度,故从 解得 于是在这段时间内,火车走过的距离为  = 即在刹车后,火车需走过40m才能停住。 习题 5—2 1 求下列定积分: (1)   (2) (3) (4)  (5)(6) (7) (8)    (9)        (10) (11)设 2.求由与直线x=1,x=2及x轴所成的图形的面积。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服