资源描述
中考数学平行四边形练习题及解析
一、选择题
1.已知,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.当∠APB=45°时,PD的长是( );
A. B. C. D.5
2.如图,正方形ABCD的边长为2a,点E从点A出发沿着线段AD向点D运动(不与点A、D重合),同时点F从点D出发沿着线段DC向点C运动(不与点D、C重合),点E与点F的运动速度相同.BE与AF相交于点G,H为BF中点,则有下列结论:①∠BGF是定值;②BF平分∠CBE;③当E运动到AD中点时,GH=;④当C△AGB = 时,S四边形GEDF =a2 ,其中正确的是( )
A.①③ B.①②③ C.①③④ D.①④
3.将个边长都为1cm的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )
A. B. C. D.
4.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )
A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4
5.如图,在正方形ABCD中,点G是对角线AC上一点,且CG=CB,连接BG,取BG上任意一点H,分别作HM⊥AC于点M,HN⊥BC于点N,若正方形的边长为2,则HM+HN的值为( )
A. B.1 C. D.
6.如图,在中,,依次是上的五个点,并且,在三个结论:(1);(2);(3)之中,正确的个数是( )
A. B. C. D.
7.如图,在ABCD中,AD=2AB,,垂足在线段上,、分别是、的中点,连接,、的延长线交于点,则下列结论:①;②:③;④.其中,正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
8.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为、、,若=3,=8,则的值为( )
A.22 B.24 C.44 D.48
9.如图,在边长为6的正方形ABCD中,E是边CD的中点,将沿AE对折至,延长交BC于点G,连接则BG的长( )
A.1 B.2 C. D.3
10.如图,点在同一条直线上,正方形、正方形的边长分别为为线段的中点,则的长为( )
A. B.
C. D.
二、填空题
11.如图,以RtABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=,那么BC=______.
12.如图,在平行四边形ABCD中,AB=6,BC=4,∠A=120°,E是AB的中点,点F在平行四边形ABCD的边上,若△AEF为等腰三角形,则EF的长为_____.
13.已知在矩形中,点在直线上,点在直线上,且当时,________________.
14.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有_____.
15.如图,在平行四边形ABCD,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:①∠BCD=2∠DCF;②EF=CF;③S△CDF=S△CEF;④∠DFE=3∠AEF,-定成立的是_________.(把所有正确结论的序号都填在横线上)
16.如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点,上.在点M从点A运动到点B的过程中,若边与边CD交于点E,则点E相应运动的路径长为_____cm.
17.如图,菱形的边长是4,,点,分别是,边上的动点(不与点,,重合),且,若,,与相交于点,当为等腰三角形时,的长为________.
18.如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________
19.如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.
20.如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.
三、解答题
21.综合与实践.
问题情境:
如图①,在纸片中,,,过点作,垂足为点,沿剪下,将它平移至的位置,拼成四边形.
独立思考:(1)试探究四边形的形状.
深入探究:(2)如图②,在(1)中的四边形纸片中,在.上取一点,使,剪下,将它平移至的位置,拼成四边形,试探究四边形的形状;
拓展延伸:(3)在(2)的条件下,求出四边形的两条对角线长;
(4)若四边形为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.
22.如图正方形,与相交于点(不与、重合).
(1)如图(1),当,
①求证:;
②求证:;
(2)如图(2),当,边长,,求的长.
23.如下图1,在平面直角坐标系中中,将一个含的直角三角板如图放置,直角顶点与原点重合,若点A的坐标为,.
(1)旋转操作:如下图2,将此直角三角板绕点O顺时针旋转时,则点B的坐标为 .
(2)问题探究:在图2的基础上继续将直角三角板绕点O顺时针,如图3,在AB边上的上方以AB为边作等边,问:是否存在这样的点D,使得以点A、B、C、D四点为顶点的四边形构成为菱形,若存在,请直接写出点D所有可能的坐标;若不存在,请说明理由.
(3)动点分析:在图3的基础上,过点O作于点P,如图4,若点F是边OB的中点,点M是射线PF上的一个动点,当为直角三角形时,求OM的长.
24.正方形ABCD中,对角线AC与BD交于点O,点P是正方形ABCD对角线BD上的一个动点(点P不与点B,O,D重合),连接CP并延长,分别过点D,B向射线作垂线,垂足分别为点M,N.
(1)补全图形,并求证:DM=CN;
(2)连接OM,ON,判断OMN的形状并证明.
25.如图,在正方形中,是边上的一动点(不与点、重合),连接,点关于直线的对称点为,连接并延长交于点,连接,过点作交的延长线于点,连接.
(1)求证:;
(2)用等式表示线段与的数量关系,并证明.
26.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:
如图,,点为边上一定点,点为边上一动点,以为一边在∠MON的内部作正方形,过点作,垂足为点(在点、之间),交与点,试探究的周长与的长度之间的等量关系该兴趣小组进行了如下探索:
(动手操作,归纳发现)
(1)通过测量图、、中线段、、和的长,他们猜想的周长是长的_____倍.请你完善这个猜想
(推理探索,尝试证明)
为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:
(2)如图,过点作,垂足为点
则
又四边形正方形,
,
则
在与中,
(类比探究,拓展延伸)
(3)如图,当点在线段的延长线上时,直接写出线段、、与长度之间的等量关系为 .
27.如图平行四边形ABCD,E,F分别是AD,BC上的点,且AE=CF,EF与AC交于点O.
(1)如图①.求证:OE=OF;
(2)如图②,将平行四边形ABCD(纸片沿直线EF折叠,点A落在A1处,点B落在点B1处,设FB交CD于点G.A1B分别交CD,DE于点H,P.请在折叠后的图形中找一条线段,使它与EP相等,并加以证明;
(3)如图③,若△ABO是等边三角形,AB=4,点F在BC边上,且BF=4.则= (直接填结果).
28.在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.
(1)求m,n的值;
(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;
②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;
(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.
29.如图,锐角,,点是边上的一点,以为边作,使,.
(1)过点作交于点,连接(如图①)
①请直接写出与的数量关系;
②试判断四边形的形状,并证明;
(2)若,过点作交于点,连接(如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.
30.如图,在平行四边形中,的平分线交于点E,交的延长线于F,以为邻边作平行四边形。
(1)证明平行四边形是菱形;
(2)若,连结,①求证:;②求的度数;
(3)若,,,M是的中点,求的长。
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
过P作PB的垂线,过A作PA的垂线,两条垂线相于与E,连接BE,由∠APB=45°可得∠EPA=45°,可得△PAE是等腰直角三角形,即可求出PE的长,根据角的和差关系可得∠EAB=∠PAD,利用SAS可证明△PAD≌△EAB,可得BE=PD,利用勾股定理求出BE的长即可得PD的长.
【详解】
过P作PB的垂线,过A作PA的垂线,两条垂线相交与E,连接BE,
∵∠APB=45°,EP⊥PB,
∴∠EPA=45°,
∵EA⊥PA,
∴△PAE是等腰直角三角形,
∴PA=AE,PE=PA=2,
∵四边形ABCD是正方形,
∴∠EAP=∠DAB=90°,
∴∠EAP+∠EAD=∠DAB+∠EAD,即∠PAD=∠EAB,
又∵AD=AB,PA=AE,
∴△PAD≌△EAB,
∴PD=BE===2,
故选A.
【点睛】
本题考查正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质及勾股定理,熟练掌握相关性质并正确作出辅助线是解题关键.
2.A
解析:A
【解析】
【分析】
根据题意很容易证得△BAE≌△ADF,即可得到AF=BE,利用正方形内角为90°,得出AF⊥DE,即可判断①,②无法判断,③根据直角三角形斜边的中线等于斜边的一半即可求解. ④根据△BAE≌△ADF,即可得到S四边形GEDF 即可求解.
【详解】
①证明:∵E在AD边上(不与A.D重合),点F在DC边上(不与D.C重合).
又∵点E.F分别同时从A. D出发以相同的速度运动,
∴AE=DF,
∵四边形ABCD是正方形,
∴
在△BAE和△ADF中,
∴△BAE≌△ADF(SAS),
∴∠1=∠2,
∵
∴
即
∠BGF是定值;正确.
②无法判断与的大小, BF平分∠CBE;错误.
③当E运动到AD中点时,
点F运动到CD中点,
GH=正确.
④△BAE≌△ADF,
则S四边形GEDF
当C△AGB =时,
S四边形GEDF =a2 ,故S四边形GEDF =a2 ,错误.
故选A.
【点睛】
考查正方形的性质,全等三角形的判定与性质,勾股定理等,掌握全等三角形的判定定理是解题的关键.
3.B
解析:B
【解析】
【分析】
根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.由此即可解答.
【详解】
由题意可得一个阴影部分面积等于正方形面积的 , 即一个阴影部分的面积为
如图,5个这样的正方形重叠部分(阴影部分)的面积和为×4,
∴n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1),
∴2019个正方形重叠形成的重叠部分的面积和为×(2019-1)=.
故选B.
【点睛】
本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.
4.D
解析:D
【解析】
【分析】
根据勾股定理的逆定理求出△ABC是直角三角形,得出四边形AEPF是矩形,求出AM=EF=AP,求出AP≥4.8,即可得出答案.
【详解】
解:连接AP.
∵AB=6,AC=8,BC=10,
∴AB2+AC2=36+64=100,BC2=100,
∴AB2+AC2=BC2,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴∠AEP=∠AFP=∠BAC=90°,
∴四边形AEPF是矩形,
∴AP=EF,
∵∠BAC=90°,M为EF中点,
∴AM=EF=AP,
当AP⊥BC时,AP值最小,
此时S△BAC=×6×8=×10×AP,
AP=4.8,
即AP的范围是AP≥4.8,
∴2AM≥4.8,
∴AM的范围是AM≥2.4(即x≥2.4).
∵P为边BC上一动点,当P和C重合时,AM=4,
∵P和B、C不重合,
∴x<4,
综上所述,x的取值范围是:2.4≤x<4.
故选:D.
【点睛】
本题考查了垂线段最短,三角形面积,勾股定理的逆定理,矩形的判定的应用,直角三角形的性质,关键是求出AP的范围和得出AM=AP.
5.A
解析:A
【分析】
连接CH,过G点作GP⊥BC于点P,根据将转化为GP的长,再由等腰直角三角形的性质进行求解即可得解.
【详解】
连接CH,过G点作GP⊥BC于点P,如下图所示:
由题可知:,,
∵
∴
∵CG=CB,
∴
∵四边形ABCD是正方形,正方形的边长为2
∴,
∴
∵GP⊥BC
∴是等腰直角三角形
∴
∴,
故选:A.
【点睛】
本题主要考查了三角形的面积求法,正方形的性质,等腰直角三角形的性质等,熟练掌握相关知识点是解决本题的关键.
6.B
解析:B
【分析】
先根据平行四边形性质和等腰三角形性质可得是的角平分线,是的角平分线,结论(2)正确.再利用结论(2)可得,即可判断结论(1)(3)错误,
【详解】
解:设,则,
,
,,,
在中,
,
,
∴,
,
同理可得:,
,
∴,
,
故(2)正确;
∵,,
∴,即,
∴
所以与不垂直,故(1)不正确;
∵,,
∴,即,
∴
故(3)不正确;
故选:.
【点睛】
本题考查了平行四边形性质,等腰三角形性质,三角形内角和定理等,证明是的角平分线,是的角平分线是解题关键.
7.C
解析:C
【分析】
由点F是AD的中点,结合ABCD的性质,得FD=CD,即可判断①;先证∆AEF≅∆DHF,再证∆ECH是直角三角形,即可判断②;由EF=HF,得,由,CE⊥CD,结合三角形的面积公式,即可判断③;设∠AEF=x,则∠H=x,根据直角三角形的性质,得∠FCH=∠H=x,由FD=CD,∠DFC=∠FCH=x,由FG∥CD∥AB,得∠AEF=∠EFG=x,由EF=CF,∠EFG=∠CFG=x,进而得到,即可判断④.
【详解】
∵点F是AD的中点,
∴2FD=AD,
∵在ABCD中,AD=2AB,
∴FD=AB=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠BCF,
∴∠DCF=∠BCF,即:,
∴①正确;
∵AB∥CD,
∴∠A=∠FDH,∠AEF=∠H,
又∵AF=DF,
∴∆AEF≅∆DHF(AAS),
∴EF=HF,
∵,
∴CE⊥CD,即:∆ECH是直角三角形,
∴=EH,
∴②正确;
∵EF=HF,
∴
∵,CE⊥CD,垂足在线段上,
∴,
∴,
∴,
∴③错误;
设∠AEF=x,则∠H=x,
∵在Rt∆ECH中,CF=FH=EF,
∴∠FCH=∠H=x,
∵FD=CD,
∴∠DFC=∠FCH=x,
∵点F,G分别是EH,EC的中点,
∴FG∥CD∥AB,
∴∠AEF=∠EFG=x,
∵EF=CF,
∴∠EFG=∠CFG=x,
∴∠DFE=∠DFC+∠EFG+∠CFG=3x,
∴.
∴④正确.
故选C.
【点睛】
本题主要考查平行四边形和直角三角形的性质定理的综合,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.
8.C
解析:C
【分析】
根据已知条件得到AB=,CD=,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=2,由已知条件得到∠BAE=90°,根据勾股定理得到BE=,于是得到结论.
【详解】
∵S1=3,S3=8
∴AB=,CD=
过A作AE∥CD交BC于E
则∠AEB=∠DCB
∵AD∥BC
∴四边形AECD是平行四边形
∴CE=AD,AE=CD=
∵∠ABC+∠DCB=90°
∴∠AEB+∠ABC=90°
∴∠BAE=90°
∴BE=
∵BC=2AD
∴BC=2BE=
∴S2=
故选:C.
【点睛】
本题考查平行四边形的判定和性质,勾股定理,能正确作辅助线构造直角三角形是解决此题的关键.
9.B
解析:B
【分析】
首先证明AB=AF=AD,然后再证明∠AFG=90°,接下来,依据HL可证明△ABG≌△AFG,得到BG=FG,再利用勾股定理得出GE2=CG2+CE2,进而求出BG即可.
【详解】
解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,
∴△ABG≌△AFG(HL);
∴BG=FG(全等三角形对应边相等),
设BG=FG=x,则GC=6-x,
∵E为CD的中点,
∴CE=EF=DE=3,
∴EG=3+x,
∴在Rt△CEG中,32+(6-x)2=(3+x)2(勾股定理),
解得x=2,
∴BG=2,
故选B.
【点睛】
此题主要考查了勾股定理的综合应用、三角形全的判定和性质以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.
10.B
解析:B
【分析】
连接BD、BF,由正方形的性质可得:∠CBD=∠FBG=45°,∠DBF=90°,再应用勾股定理求BD、BF和DF,最后应用“直角三角形斜边上中线等于斜边一半”可求得BH.
【详解】
如图,连接BD、BF,
∵四边形ABCD和四边形BEFG都是正方形,
∴AB=AD=2,BE=EF=3,∠A=∠E=90°,∠ABD=∠CBD=∠EBF=∠FBG=45°,
∴∠DBF=90°,BD=2,BF=3,
∴在Rt△BDF中,DF==,
∵H为线段DF的中点,
∴BH=DF=.
故选B.
【点睛】
本题考查了正方形的性质、等腰直角三角形边的关系、勾股定理、直角三角形性质等,解题关键添加辅助线构造直角三角形.
二、填空题
11.8
【分析】
通过作辅助线使得△CAO≌△GBO,证明△COG为等腰直角三角形,利用勾股定理求出CG后,即可求出BC的长.
【详解】
如图,延长CB到点G,使BG=AC.
∵根据题意,四边形ABED为正方形,
∴∠4=∠5=45°,∠EBA=90°,
∴∠1+∠2=90°
又∵三角形BCA为直角三角形,AB为斜边,
∴∠2+∠3=90°
∴∠1=∠3
∴∠1+∠5=∠3+∠4,故∠CAO=∠GBO,
在△CAO和△GBO中,
故△CAO≌△GBO,
∴CO=GO=,∠7=∠6,
∵∠7+∠8=90°,
∴∠6+∠8=90°,
∴三角形COG为等腰直角三角形,
∴CG=,
∵CG=CB+BG,
∴CB=CG-BG=12-4=8,
故答案为8.
【点睛】
本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.
12.3或3或
【分析】
△AEF为等腰三角形,分三种情况讨论,由等腰三角形的性质和30°直角三角形性质、平行四边形的性质可求解.
【详解】
解:当时,如图,过点作于,
是的中点,
,
,,,
,,
,,
,
当时,如图2,
过点作于,过点作于,
图2
在平行四边形中,,,,
,,
,
,,
,,,
,
,,
,
;
当时,如图3,
图3
,
综上所述:的长为或3或.
【点睛】
本题考查了平行四边形的性质,等腰三角形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.
13.或
【分析】
根据点在直线上,点在直线上,分两种情况:1.P、Q点位于线段上;2.P、Q点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.
【详解】
解:当P点位于线段BC上,Q点位于线段CD上时:
∵四边形ABCD是矩形
∴∠BAP=∠CPQ,∠APB=∠PQC
∵
∴
∴PC=AB=,BP=BC-PC=3-=
∴AP==
当P点位于线段BC的延长线上,Q点位于线段CD的延长线上时:
∵四边形ABCD是矩形
∴∠BAP=∠CPQ,∠APB=∠PQC
∵
∴
∴PC=AB=,BP=BC+PC=3+=
∴AP==
故答案为:或
【点睛】
此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.
14.①②③④
【分析】
①根据角平分线的定义可得∠BAE=∠DAE=45°,可得出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AEAB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;
②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;
③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;
④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;
⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.
【详解】
∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AEAB.
∵ADAB,∴AE=AD.
在△ABE和△AHD中,∵,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;
∵∠AHB(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH.
∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD.
在△BEH和△HDF中,∵,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD﹣DF,∴BC﹣CF=(CD+HE)﹣(CD﹣HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;
综上所述:结论正确的是①②③④.
故答案为①②③④.
【点睛】
本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.
15.①②④
【分析】
①根据平行四边形的性质和等腰三角形的性质即可判断;
②延长EF,交CD延长线于点M,首先根据平行四边形的性质证明,得出,进而得出,从而利用直角三角形斜边中线的性质即可判断;
③由,得出,从而可判断正误;
④设 ,利用三角形内角和定理分别表示出∠DFE和∠AEF,从而判断正误.
【详解】
①∵点F是AD的中点,
∴ .
∵在平行四边形ABCD中,AD=2AB,
,
,
,
∴∠BCD=2∠DCF,故①正确;
②延长EF,交CD延长线于点M,
∵四边形ABCD是平行四边形,
,
,
∵点F是AD的中点,
∴ .
在和中,
.
,
,
,
,故②正确;
③∵,
∴ .
,故③错误;
④设 ,则,
,
,
.
,
,故④正确;
综上所述,正确的有①②④,
故答案为 :①②④.
【点睛】
本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.
16.
【分析】
探究点E的运动轨迹,寻找特殊位置解决问题即可.
【详解】
如图1中,当点M与A重合时,AE=EN,设AE=EN=xcm,
在Rt△ADE中,则有x2=32+(9﹣x)2,解得x=5,
∴DE=10﹣1-5=4(cm),
如图2中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=10﹣1﹣3=6(cm),
如图3中,当点M运动到点B′落在CD时,
DB′(即DE″)=10﹣1﹣=(9﹣)(cm),
∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=6﹣4+6﹣(9﹣)=()(cm).
故答案为:.
【点睛】
本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.
17.或
【分析】
连接AC交BD于O,由菱形的性质可得AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,可证四边形BEGF是菱形,可得∠ABG=30°,可得点B,点G,点D三点共线,由直角三角形性质可求BD=4,AC=4,分两种情况讨论,利用等腰三角形的性质可求解.
【详解】
如图,连接AC交BD于O,
∵菱形ABCD的边长是4,∠ABC=60°,
∴AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,
∵EG∥BC,FG∥AB,
∴四边形BEGF是平行四边形,
又∵BE=BF,
∴四边形BEGF是菱形,
∴∠ABG=30°,
∴点B,点G,点D三点共线,
∵AC⊥BD,∠ABD=30°,
∴AO=AB=2,BO=,
∴BD=,AC=4,
同理可求BG=BE,即BE=,
若AD=DG'=4时,
∴BG'=BD-DG'=,
∴BE';
若AG''=G''D时,过点G''作G''H⊥AD于H,
∴AH=HD=2,
∵∠ADB=30°,G''H⊥AD,
∴DG''=2HG'',
∵,
解得:HG'',DG''=2HG'',
∴BG''=BD-DG''=,
∴BE''=,
综上所述:BE为或.
【点睛】
本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.
18.
【分析】
由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.
【详解】
解:连接FD
∵正方形ABCD的边长为4,
∴AB=BC=4,∠B=90°,
∴AC=,
当P与D重合时,PC=ED=PA,即G与A重合,
∴EG的中点为D,即F与D重合,
当点P从D点运动到A点时,则点F运动的轨迹为DF,
∵D是AE的中点,F是EG的中点,
∴DF是△EAG的中位线,
∴DF∥AG,
∵∠CAG=90°,∠CAB=45°,
∴∠BAG=45°,
∴∠EAG=135°,
∴∠EDF=135°,
∴∠FDA=45°,
∴F为正方形ABCD的对角线的交点,CF⊥DF,
此时CF最小,
此时CF=AG=;
故答案为:.
【点睛】
本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.
19.(-,0)
【分析】
先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.
【详解】
∵菱形的两个顶点坐标为,,
∴对角线的交点D的坐标是(2,2),
∴,
将菱形绕点以每秒的速度逆时针旋转,
旋转1次后坐标是(0, ),
旋转2次后坐标是(-2,2),
旋转3次后坐标是(-,0),
旋转4次后坐标是(-2,-2),
旋转5次后坐标是(0,-),
旋转6次后坐标是(2,-2),
旋转7次后坐标是(,0),
旋转8次后坐标是(2,2)
旋转9次后坐标是(0,,
由此得到点D旋转后的坐标是8次一个循环,
∵,
∴第秒时,菱形两对角线交点的坐标为(-,0)
故答案为:(-,0).
【点睛】
此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.
20.
【分析】
根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.
【详解】
解:∵将△CDP沿DP折叠,点C落在点E处,
∴DC=DE=5,CP=EP.
在△OEF和△OBP中,
,
∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP.
设EF=x,则BP=x,DF=DE-EF=5-x,
又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,
∴AF=AB-BF=2+x.
在Rt△DAF中,AF2+AD2=DF2,
∴(2+x)2+32=(5-x)2,
∴x=
∴AF=2+=
故答案为:
【点睛】
本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
三、解答题
21.(1)矩形;(2)菱形;(3);(4)见解析
【分析】
(1)由平移推出,即可证得四边形是平行四边形,再根据,得到即可得到结论;
(2)由平移推出,证得四边形是平行四边形,根据得到,再根据勾股定理求出AF=5=AD,即可证得四边形是菱形;
(3)先利用勾股定理求出,再根据菱形的面积求出;
(4)在BC边上取点E,连接AE,平移△ABE得到△DCF,可得四边形AEFD是平行四边形.
【详解】
(1)四边形是矩形,
在中,,,
由平移可知:,
∴,
∴,
∴四边形是平行四边形,
∵,
∴,
∴四边形是矩形;
(2)四边形是菱形,
在矩形中, ,,
由平移可知:,
∴,
∴,
∴四边形是平行四边形,
∵,
∴,
在,,
∴,
∴四边形是菱形;
(3)连接,
在中,,
,
∴,
∴;
(4)在BC上取一点E,连接AE,平移△ABE得到△DCF,可得四边形AEFD是平行四边形.
【点睛】
此题考查了平行四边形的性质,矩形的判定定理,菱形的判定及性质,平移的性质的应用,勾股定理.
22.(1)①证明见解析;②证明见解析;(2).
【分析】
(1)过点作交延长线于点,连接,
①由正方形的性质可得,,,即可证明四边形DGHM是平行四边形,可得DM=GH,由可得∠EDM=90°,根据直角三角形两锐角互余的性质可得,利用ASA可证明△ADE≌△CDM,可得DE=DM,即可证明DE=GH;
②由①得DM=DE,根据勾股定理可得EM=DE,利用三角形三边关系即可得结论;
(2)过点作DN//GH交于点,作,交延长线于点,可证明四边形为平行四边形,可得,,根据勾股定理可求出CN的长,利用AAS可证明,可得,,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN,利用SAS可证明,即可证明,设,利用勾股定理可求出x的值,进而利用勾股定理求出DE的值即可得答案.
【详解】
(1)如图(1),过点作交延长线于点,连接,EM,
①∵四边形为正方形,
∴,,
∴四边形为平行四边形,
∴DM=GH,,
∵,
∴,
∴,
∵,
∴,
∴,
在和中,
∴,
∴,
∴.
②在中,∠EDM=90°,
∴,
∵,
∴,
∴,
在中,,
∵,
∴.
(2)如图(2),过点作DN//GH交于点,则四边形为平行四边形,
∴,,
∵,,,
∴,
∴,
作,交延长线于点,
在和中,
∴,
∴,,
∵,
∴,
∴,
∴,
在和中,
∴,
∴,即,
设,则BE=4-x,
在中,,
解得:,
∴.
【点睛】
本题考查正方形的性质、平行四边形的判定与性质、全等三角形的判定与性质、三角形的三边关系及勾股定理,熟练掌握相关性质及判定定理,并正确作出辅助线是解题关键.
23.(1)(,);(2)存在,点D的坐标为(0,3)或(,1)或(0,-1);(3)OM=或
【分析】
(1)过点B作BD⊥y轴于D,利用30°所对的直角边是斜边的一半和勾股定理求出OB,再利用30°所对的直角边是斜边的一半和勾股定理求出BD和OD即可得出结论;
(2)根据题意和等边三角形的性质分别求出点A、B、C的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论;
(3)利用30°所对的直角边是斜边的一半和勾股定理求出OP和BP,然后根据直角三角形的直角顶点分类讨论,分别画
展开阅读全文