收藏 分销(赏)

人教版七年级数学下册-期末几何压轴题常考题.doc

上传人:快乐****生活 文档编号:4738106 上传时间:2024-10-11 格式:DOC 页数:43 大小:2.08MB 下载积分:12 金币
下载 相关 举报
人教版七年级数学下册-期末几何压轴题常考题.doc_第1页
第1页 / 共43页
人教版七年级数学下册-期末几何压轴题常考题.doc_第2页
第2页 / 共43页


点击查看更多>>
资源描述
一、解答题 1.如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(-2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D' (1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标. (2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标. (3)求四边形ABCD的面积. 2.如图1,点在直线、之间,且. (1)求证:; (2)若点是直线上的一点,且,平分交直线于点,若,求的度数; (3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示). 3.如图1,点在直线上,点在直线上,点在,之间,且满足. (1)证明:; (2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由; (3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______. 4.已知,AB∥CD.点M在AB上,点N在CD上. (1)如图1中,∠BME、∠E、∠END的数量关系为:  ;(不需要证明) 如图2中,∠BMF、∠F、∠FND的数量关系为:  ;(不需要证明) (2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数; (3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数. 5.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间. (1)求证:∠CAB=∠MCA+∠PBA; (2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE; (3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数. 6.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC. (1)在动点A运动的过程中,  (填“是”或“否”)存在某一时刻,使得AD平分∠EAC? (2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由; (3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系. 7.阅读下面的文字,解答问题 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分. 又例如:<<,即2<<3, ∴的整数部分为2,小数部分为(﹣2) 请解答: (1)整数部分是   ,小数部分是   . (2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值. (3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数. 8.阅读下面的文字,解答问题. 对于实数a,我们规定:用符号[a]表示不大于a的最大整数;用{a}表示a减去[a]所得的差. 例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2. (1)仿照以上方法计算:[]=   {5﹣}=   ; (2)若[]=1,写出所有满足题意的整数x的值:   . (3)已知y0是一个不大于280的非负数,且满足{}=0.我们规定:y1=[],y2=[],y3=[],…,以此类推,直到yn第一次等于1时停止计算.当y0是符合条件的所有数中的最大数时,此时y0=   ,n=   . 9.阅读下列材料:小明为了计算的值,采用以下方法: 设 ① 则 ② ②-①得, 请仿照小明的方法解决以下问题: (1)________; (2)_________; (3)求的和(,是正整数,请写出计算过程). 10.阅读材料,回答问题: (1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,,,,则________,________. (2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下: 里程范围 4公里以内(含4公里) 4-12公里以内(含12公里) 12-24公里以内(含24公里) 24公里以上 收费标准 2元 4公里/元 6公里/元 8公里/元 ①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元; ②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)? 11.规定:求若千个相同的有理数(均不等于)的除法运算叫做除方,如等,类比有理数的乘方,我们把记作,读作“的圈次方”,记作,读作“的圈次方”,一般地,把记作,读作“”的圈次方. (初步探究)(1)直接写出计算结果:    ;    ; (2)关于除方,下列说法错误的是(   ) A.任何非零数的圈次方都等于    B.对于任何正整数 C.    D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (3)试一试:,依照前面的算式,将,的运算结果直接写成幂的形式是    ,    ; (4)想一想:将一个非零有理数的圆次方写成幂的形式是:    ; (5)算一算:. 12.若一个四位数t的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t与它的“中介数”的差为P(t).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P(5536)=5536﹣6553=-1017. (1)P(2215)=  ,P(6655)=  . (2)求证:任意一个“前介数”t,P(t)一定能被9整除. (3)若一个千位数字为2的“前介数”t能被6整除,它的“中介数”能被2整除,请求出满足条件的P(t)的最大值. 13.如图,已知点,,. (1)求的面积; (2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标; (3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标__________(用含的式子表示). 14.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 15.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2). (1)直接写出点E的坐标   ;D的坐标     (3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x, y,z之间的数量关系,并证明你的结论. 16.阅读下列材料: 我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应的点之间的距离; 例 1.解方程,因为在数轴上到原点的距离为的点对应的数为,所以方程的解为. 例 2.解不等式,在数轴上找出的解(如图),因为在数轴上到对应的点的距离等于的点对应的数为或,所以方程的解为或,因此不等式的解集为或. 参考阅读材料,解答下列问题: (1)方程的解为 ; (2)解不等式:; (3)解不等式:. 17.如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,,并且满足. (1)直接写出点,点的坐标; (2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒.是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由; (3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,,之间的数量关系,直接写出结论. 18.如图所示,在直角坐标系中,已知,,将线段平移至,连接、、、,且,点在轴上移动(不与点、重合). (1)直接写出点的坐标; (2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由; (3)点在运动过程中,请写出、、三者之间存在怎样的数量关系,并说明理由. 19.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽; (2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由. 20.判断下面方程组的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程. 解:①×2-②×3,得,解得, 把代入方程①,得,解得. ∴原方程组的解为 21.阅读下列材料,解答下面的问题: 我们知道方程有无数个解,但在实际生活中我们往往只需求出其 正整数解. 例:由,得:,(x、y为正整数) ∴,则有.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入∴2x+3y=12的正整数解为 问题: (1)请你写出方程的一组正整数解:      . (2)若为自然数,则满足条件的x值为      . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案? 22.如图,已知和的度数满足方程组,且. (1)分别求和的度数; (2)请判断与的位置关系,并说明理由; (3)求的度数. 23.新定义,若关于,的二元一次方程组①的解是,关于,的二元一次方程组②的解是,且满足,,则称方程组②的解是方程组①的模糊解.关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是________. 24.如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题: (1)求A、B两点的坐标; (2)设三角形ABC面积为,若4<≤7,求m的取值范围; (3)设,请给出,满足的数量关系式,并说明理由. 25.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数. 材料2:求方程的正整数解. 解:由已知得:……① 设(为整数),则……② 把②代入①得:. 所以方程组的解为 , 根据题意得:. 解不等式组得0<<.所以的整数解是1,2,3. 所以方程的正整数解是:,,. 根据以上材料回答下列问题: (1)下列方程中:① ,② ,③ ,④ ,⑤ ,⑥ .没有整数解的方程是 (填方程前面的编号); (2)仿照上面的方法,求方程的正整数解; (3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程) 26.若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足﹣1≤x﹣y≤1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因为﹣1≤x﹣y≤1,方程2x﹣1=0与方程y﹣1=0是“友好方程”. (1)请通过计算判断方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”. (2)若关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程+y=2k+1是“友好方程”,请你求出k的最大值和最小值. 27.如图所示,在平面直角坐标系中,点A,,的坐标为,,,其中,,满足,. (1)求,,的值; (2)若在轴上,且,求点坐标; (3)如果在第二象限内有一点,在什么取值范围时,的面积不大于的面积?求出在符合条件下,面积最大值时点的坐标. 28.请阅读求绝对值不等式和的解的过程. 对于绝对值不等式,从图1的数轴上看:大于而小于的数的绝对值小于,所以的解为; 对于绝对值不等式,从图2的数轴上看:小于或大于的数的绝对值大于,所以的解为或. (1)求绝对值不等式的解 (2)已知绝对值不等式的解为,求的值 (3)已知关于,的二元一次方程组的解满足,其中是负整数,求的值. 29.在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为. (1)①当点与点重合时,的值为______;②当点与点重合时,的值为______. (2)请用含的式子表示,并直接写出的取值范围. 30.规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知,则是隐线的亮点的是 ; (2) 设是隐线的两个亮点,求方程中的最小的正整数解; (3)已知是实数, 且,若是隐线的一个亮点,求隐线中的最大值和最小值的和. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)图见解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐标为:(a-2,b+1);(3)四边形ABCD的面积为22. 【分析】 (1)直接利用平移画出图形,再根据图形写出对应点的坐标进而得出答案; (2)利用平移规律进而得出对应点坐标的变化规律:向上平移1个单位,纵坐标加1;向左平移2个单位,横坐标减2; (3)利用四边形ABCD所在的最小矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)如图所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1); (2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a-2,b+1); (3)四边形ABCD的面积为:6×6-×2×6-×2×4-×2×4=22. 【点睛】 此题主要考查了平移变换以及坐标系内四边形面积求法,正确得出对应点位置是解题关键. 2.(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数; (3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出. 【详解】 (1)过点E作EF∥CD,如图, ∵EF∥CD, ∴ ∴ ∵, ∴ ∴EF∥AB, ∴CD∥AB; (2)过点E作HE∥CD,如图, 设 由(1)得AB∥CD,则AB∥CD∥HE, ∴ ∴ 又∵平分, ∴ ∴ 即 解得:即; (3)过点N作NP∥CD,过点M作QM∥CD,如图, 由(1)得AB∥CD,则NP∥CD∥AB∥QM, ∵NP∥CD,CD∥QM, ∴, 又∵, ∴ ∵, ∴ ∴ 又∵PN∥AB, ∴ ∵, ∴ 又∵AB∥QM, ∴ ∴ ∴. 【点睛】 本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系. 3.(1)见解析;(2)见解析;(3)n-1 【分析】 (1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证; (2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论; (3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值. 【详解】 解:(1)如图,连接, , , , , (2), 理由:作,则 如图, 设,则. ,, ,, . 即. (3)作,则 如图,设,则. , , , , , 故答案为. 【点睛】 本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式. 4.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30° 【分析】 (1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EH∥AB,如图1, ∴∠BME=∠MEH, ∵AB∥CD, ∴HE∥CD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN﹣∠END. 如图2,过F作FH∥AB, ∴∠BMF=∠MFK, ∵AB∥CD, ∴FH∥CD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF﹣∠FND=180°, ∴2∠BME+2∠END+∠BMF﹣∠FND=180°, 即2∠BMF+∠FND+∠BMF﹣∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQ∥NP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键. 5.(1)证明见解析;(2)证明见解析;(3)120°. 【分析】 (1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解; (2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解; (3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解. 【详解】 解:(1)证明:如图1,过点A作AD∥MN, ∵MN∥PQ,AD∥MN, ∴AD∥MN∥PQ, ∴∠MCA=∠DAC,∠PBA=∠DAB, ∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA, 即:∠CAB=∠MCA+∠PBA; (2)如图2,∵CD∥AB, ∴∠CAB+∠ACD=180°, ∵∠ECM+∠ECN=180°, ∵∠ECN=∠CAB ∴∠ECM=∠ACD, 即∠MCA+∠ACE=∠DCE+∠ACE, ∴∠MCA=∠DCE; (3)∵AF∥CG, ∴∠GCA+∠FAC=180°, ∵∠CAB=60° 即∠GCA+∠CAB+∠FAB=180°, ∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA, 由(1)可知,∠CAB=∠MCA+∠ABP, ∵BF平分∠ABP,CG平分∠ACN, ∴∠ACN=2∠GCA,∠ABP=2∠ABF, 又∵∠MCA=180°﹣∠ACN, ∴∠CAB=180°﹣2∠GCA+2∠ABF=60°, ∴∠GCA﹣∠ABF=60°, ∵∠AFB+∠ABF+∠FAB=180°, ∴∠AFB=180°﹣∠FAB﹣∠FBA =180°﹣(120°﹣∠GCA)﹣∠ABF =180°﹣120°+∠GCA﹣∠ABF =120°. 【点睛】 本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键. 6.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC; (2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B; (3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD. 【详解】 解:(1)是,理由如下: 要使AD平分∠EAC, 则要求∠EAD=∠CAD, 由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD, 则当∠ACB=∠B时,有AD平分∠EAC; 故答案为:是; (2)∠B=∠ACB,理由如下: ∵AD平分∠EAC, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠B=∠EAD,∠ACB=∠CAD, ∴∠B=∠ACB. (3)∵AC⊥BC, ∴∠ACB=90°, ∵∠EBF=50°, ∴∠BAC=40°, ∵AD∥BC, ∴AD⊥AC. 【点睛】 此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键. 7.(1)7;-7;(2)5;(3)13-. 【分析】 (1)估算出的范围,即可得出答案; (2)分别确定出a、b的值,代入原式计算即可求出值; (3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求. 【详解】 解:(1)∵7﹤﹤8, ∴的整数部分是7,小数部分是-7. 故答案为:7;-7. (2)∵3﹤﹤4, ∴, ∵2﹤﹤3, ∴b=2 ∴|a-b|+ =|-3-2|+ =5-+ =5 (3)∵2﹤﹤3 ∴11<9+<12, ∵9+=x+y,其中x是整数,且0﹤y<1, ∴x=11,y=-11+9+=-2, ∴x-y=11-(-2)=13- 【点睛】 本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键. 8.(1)2;3﹣;(2)1、2、3;(3)256,4 【分析】 (1)依照定义进行计算即可; (2)由题可知,,则可得满足题意的整数的的值为1、2、3; (3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算. 【详解】 解:(1)由定义可得,,, . 故答案为:2;. (2), ,即, 整数的值为1、2、3. 故答案为:1、2、3. (3),即, 可设,且是自然数, 是符合条件的所有数中的最大数, , , , , , 即. 故答案为:256,4. 【点睛】 本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键. 9.(1);(2);(3) 【分析】 (1)设式子等于s,将方程两边都乘以2后进行计算即可; (2)设式子等于s,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s,将方程两边都乘以a后进行计算即可. 【详解】 (1)设s=①, ∴2s=②, ②-①得:s=, 故答案为:; (2)设s=①, ∴3s=②, ②-①得:2s=, ∴, 故答案为: ; (3)设s=①, ∴as=②, ②-①得:(a-1)s=, ∴s=. 【点睛】 此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键. 10.(1);;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里. 【分析】 (1)根据题意,确定实数左侧第一个整数点所对应的数即得; (2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得. 【详解】 (1)∵ ∴ ∵ ∴ 故答案为:;. (2)①∵ ∴3.07公里需要2元 ∵ ∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元 ∴7.93公里所需费用为:(元) ∵ ∴公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元; ∴公里所需费用为:(元) 故答案为:2;3;6. ②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元; ∴乘坐24公里所需费用为:(元) ∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里 ∴7元可以乘坐的地铁最大里程为:(公里) ∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里. 【点睛】 本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键. 11.(1),;(2)C;(3),;(4);(5)-5. 【分析】 概念学习:(1)分别按公式进行计算即可; (2)根据定义依次判定即可; 深入思考: (3)由幂的乘方和除方的定义进行变形,即可得到答案; (4)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,结果第一个数不变为a,第二个数及后面的数变为,则; (5)将第二问的规律代入计算,注意运算顺序. 【详解】 解:(1); ; 故答案为:,; (2)A、任何非零数的圈2次方都等于1;所以选项A正确; B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1; 所以选项B正确; C、,, 则;故选项C错误; D、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,故D正确; 故选:; (3)根据题意, , 由上述可知:; (4)根据题意, 由(3)可知,; 故答案为: (5) . 【点睛】 本题考查了有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 12.(1)-3006,990;(2)见解析;(3)P(t)的最大值是P(2262)=36. 【分析】 (1)根据“前介数”t与它的“中介数”的差为P(t)的定义求解即可; (2)设“前介数”为且a、b、c均不为0的整数,即1a、b、c,根据定义得到P(t)=,则P(t)一定能被9整除; (3)设“前介数”为,根据题意得到能被3整除,且b只能取2,4,6,8中的其中一个数;对应的“中介数”是,得到a只能取2,4,6,8中的其中一个数,计算P(t),推出要求P(t)的最大值,即要尽量的大,要尽量的小,再分类讨论即可求解. 【详解】 (1)解:2215是“前介数”,其对应的“中介数”是5221, ∴P(2215)=2215-5221=-3006; 6655是“前介数”,其对应的“中介数”是5665, ∴P(6655)=6655-5665=990; 故答案为:-3006,990; (2)证明:设“前介数”为且a、b、c均为不为0的整数,即1a、b、c, ∴, 又对应的“中介数”是, ∴P(t)= , ∵a、b、c均不为0的整数, ∴为整数, ∴P(t)一定能被9整除; (3)证明:设“前介数”为且即1a、b,a、b均为不为0的整数, ∴, ∵能被6整除, ∴能被2整除,也能被3整除, ∴为偶数,且能被3整除, 又1, ∴b只能取2,4,6,8中的其中一个数, 又对应的“中介数”是, 且该“中介数”能被2整除, ∴为偶数, 又1, ∴a只能取2,4,6,8中的其中一个数, ∴P(t)= , 要求P(t)的最大值,即要尽量的大,要尽量的小, ①的最大值为8,的最小值为2,但此时, 且14不能被3整除,不符合题意,舍去; ②的最大值为6,的最小值仍为2,但此时,能被3整除, 且P(t)=2262-2226=36; ③的最大值仍为8,的最小值为4,但此时, 且16不能被3整除,不符合题意,舍去; 其他情况,减少,增大,则P(t)减少, ∴满足条件的P(t)的最大值是P(2262)=36. 【点睛】 本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法. 13.(1)2;(2);(3)或 【分析】 (1)直接利用以为底,进行求面积; (2)的面积等于的面积,需要分三种情况进行分类讨论; (3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时. 【详解】 解:(1). (2)作如下图形,进行分类讨论: ①当点在轴正半轴上时, , ; ②当点在轴负半轴上时, , ; ③当点在轴负半轴上时, , ; 因此符合条件的点坐标有3个,分别是. (3), , , 即与点到的距离相等, , , , 由可推出, ①位于轴负半轴上时, , , , ; ②位于轴正半轴上时, , , 综上:点的坐标为或. 【点睛】 本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解. 14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键. 15.(1)(-2,0);(-3,0);(2)z=x+y.证明见解析. 【分析】 (1)依据平移的性质可知BC∥x轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标; (2过点P作PF∥BC交AB于点F,则PF∥AD,然后依据平行线的性质可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依据角的和差关系进行解答即可. 【详解】 解:(1)∵将三角形OAB沿x轴负方向平移, ∴BC∥x轴,BC=AE=3. ∵C(-3,2),A(1,0), ∴E(-2,0),D(-3,0). 故答案为:(-2,0);(-3,0). (2)z=x+y.证明如下:如图,过点P作PF∥BC交AB于点F,则PF∥AD, ∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°, ∴∠BPA=∠BPF+∠APF=x°+y°=z°, ∴z=x+y. 【点睛】 此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标. 16.(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3. 【分析】 (1)利用在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8求解即可; (2)先求出的解,再求出的解集即可; (3)先在数轴上找出的解,即可得出的解集. 【详解】 解:(1)∵在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8 ∴方程的解为x=2或x=-8 (2)∵在数轴上到2对应的点的距离等于3的点的对应的数为-1或5 ∴方程的解为x=-1或x=5 ∴的解集为-1≤x≤5. (3)由绝对值的几何意义可知,方程就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值. ∵在数轴上4和-2对应的点的距离是6 ∴满足方程的x的点在4的右边或-2的左边 若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3 ∴方程的解为x=5或x=-3 ∴的解集为x>5或x<-3. 故答案为(1)x=2或x=
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服