资源描述
一、选择题
1.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( )
A.70° B.45° C.110° D.135°
2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于( )
A.70° B.80° C.90° D.100°
3.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3( )
A.70° B.180° C.110° D.80°
4.如图,直线AB,CD相交于点O,EO⊥AB,垂直为点O,∠BOD=50°,则∠COE=( )
A.30° B.140° C.50° D.60°
5.如图,下列各式中正确的是( )
A. B.
C. D.
6.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为( )
A. B. C.或 D.或
7.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与己知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.其中真命题有( )个
A.1 B.2 C.3 D.4
8.如图,△OAB为等腰直角三角形(∠A=∠B=45°,∠AOB=90°),△OCD为等边三角形(∠C=∠D=∠COD=60°),满足OC>OA,△OCD绕点O从射线OC与射线OA重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的是( )
A.当α=15°时,DC∥AB
B.当OC⊥AB时,α=45°
C.当边OB与边OD在同一直线上时,直线DC与直线AB相交形成的锐角为15°
D.整个旋转过程,共有10个位置使得△OAB与△OCD有一条边平行
9.如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E-∠F=48°,则∠CDE的度数为( ).
A.16° B.32° C.48° D.64°
10.如图,已知AB∥CD∥EF,则∠、∠、∠三者之间的关系是( )
A.° B.°
C.° D.
二、填空题
11.已知,点、分别为、上的点,点、、为、内部的点,连接、、、、、,于,,,平分,平分,则(小于平角)的度数为______.
12.如图,△ABC中,∠C=90°,AC=5cm,CB=12cm,AB=13cm,将△ABC沿直线CB向右平移3cm得到△DEF,DF交AB于点G,则点C到直线DE的距离为______cm.
13.如图, 已知,,,则_________
14.如图,在平面内,两条直线,相交于点,对于平面内任意一点,若,分别是点到直线,的距离,则称为点的“距离坐标”.根据上述规定,“距离坐标”是的点共有________个.
15.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.
16.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有______.(填序号)
17.如图,四边形ABCD的长条形纸带,AB//CD,将长方形沿 EF折叠,A、D分别于A’、D'对应,若 ∠CFE =2∠CFD',则∠AEF 的度数是___.
18.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D'、C′的位置处,若∠1=56°,则∠EFB的度数是___.
19.一副直角三角板叠放如图①,.现将含角的三角板固定不动,把含角的三角板(其中)绕顶点A顺时针旋转角.
(1)如图②,当______度时,边和边所在的直线互相垂直;
(2)当旋转角在的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的______.
20.如图.已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为________.
三、解答题
21.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.
(1)当点H在线段EG上时,如图1
①当∠BEG=时,则∠HFG= .
②猜想并证明:∠BEG与∠HFG之间的数量关系.
(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.
22.已知,AB∥CD.点M在AB上,点N在CD上.
(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
23.已知,.点在上,点在 上.
(1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明)
(2)如图 3中,平分,平分,且,求的度数;
(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数.
24.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且.
(1)________,________;直线与的位置关系是______;
(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论.
(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.
25.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.
【详解】
解:∵∠1与∠5是对顶角,
∴∠1=∠2=∠5=45°,
∴a∥b,
∴∠3+∠6=180°,
∵∠3=70°,
∴∠4=∠6=110°.
故答案为C.
【点睛】
本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.
2.B
解析:B
【详解】
因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,
所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.
3.C
解析:C
【详解】
【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.
【详解】作AB∥a,由直线a平移后得到直线b,
所以,AB∥a∥b
所以,∠2=180°-∠1+∠3,
所以,∠2-∠3=180°-∠1=180°-70°=110°.
故选C
【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.
4.B
解析:B
【详解】
试题解析:EO⊥AB,
故选B.
5.D
解析:D
【详解】
试题分析:延长TS,
∵OP∥QR∥ST,
∴∠2=∠4,
∵∠3与∠ESR互补,
∴∠ESR=180°﹣∠3,
∵∠4是△FSR的外角,
∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,
∴∠2+∠3﹣∠1=180°.
故选D.
考点:平行线的性质.
6.D
解析:D
【分析】
分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.
【详解】
解:当点D在线段AB上时,如图1所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE+∠CDE=84°+20°=104°;
当点D在线段AB的延长线上时,如图2所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE-∠CDE=84°-20°=64°.
综上所述:∠ADC=104°或64°.
故选:D.
【点睛】
本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.
7.A
解析:A
【分析】
依据对顶角、同位角、平行公理以及点到直线的距离的概念进行判断,即可得出结论.
【详解】
解:①相等的角不一定是对顶角,故说法错误;
②同位角不一定相等,故说法错误;
③过直线外一点有且只有一条直线与已知直线平行,故说法错误;
④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;
故选:A.
【点睛】
本题主要考查了对顶角、同位角、平行公理以及点到直线的距离的概念,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.
8.A
解析:A
【分析】
设OC与AB交点为M,OD与AB交点为N,当α=15°时,可得∠OMN=α+∠A=60°,可证DC∥AB;当OC⊥AB时,α+∠A=90°,可得α=30°;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行.
【详解】
解:设OC与AB交点为M,OD与AB交点为N,
当α=15°时,∠OMN=α+∠A=60°,
∴∠OMN=∠C,
∴DC∥AB,
故A正确;
当OC⊥AB时,α+∠A=90°或α﹣180°=90°﹣∠A,
∴α=45°或225°,
故B错误;
当边OB与边OD在同一直线上时,应分两种情况,
则直线DC与直线AB相交形成的锐角也有两种情况,
故C错误;
整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,
根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行,
故D错误;
故选A.
【点睛】
本题主要考查了平行线的性质与判定,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.
9.B
解析:B
【分析】
已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=∠ABF,∠CDF=∠CDE;过点E作EMAB,点F作FNAB,即可得EMFN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +∠CDE, 又因2∠BED-∠BFD=48°,即可得2(∠ABF+∠CDE)-(∠ABF +∠CDE)=48°,由此即可求得∠CDE=32°.
【详解】
∵BE和DF分别平分∠ABF和∠CDE,
∴∠ABE=∠ABF,∠CDF=∠CDE,
过点E作EMAB,点F作FNAB,
∵,
∴EMFN,
∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,
∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=∠ABF+∠CDE,
∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +∠CDE,
∵2∠BED-∠BFD=48°,
∴2(∠ABF+∠CDE)-(∠ABF +∠CDE)=48°,
∴∠CDE=32°.
故选B.
【点睛】
本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键.
10.B
解析:B
【分析】
根据平行线的性质可得∠CEF=180°-y,x=z+∠CEF,利用等量代换可得x=z+180°-y,再变形即可.
【详解】
解:∵CD∥EF,
∴∠C+∠CEF=180°,
∴∠CEF=180°-y,
∵AB∥CD,
∴x=z+∠CEF,
∴x=z+180°-y,
∴x+y-z=180°,
故选:B.
二、填空题
11.【分析】
过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.
【详解】
解:过点,做平行于,如下图:
,
,
则,
解析:
【分析】
过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.
【详解】
解:过点,做平行于,如下图:
,
,
则,
,
同理可得:,
令,则,
,则,
则,
,
,
,
平分,平分,
,
,
故答案是:.
【点睛】
本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.
12.【分析】
根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.
【详解】
解:如图,连接AD、CD,作CH⊥DE于H,
依题意可得AD=BE=3cm,
∵梯形ACED
解析:
【分析】
根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.
【详解】
解:如图,连接AD、CD,作CH⊥DE于H,
依题意可得AD=BE=3cm,
∵梯形ACED的面积,
∴,
解得;
故答案为:.
【点睛】
本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.
13.90°
【分析】
根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小
【详解】
∵AB∥CF,∴∠B=∠BCF
∵CF∥DE
∴∠
解析:90°
【分析】
根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小
【详解】
∵AB∥CF,∴∠B=∠BCF
∵CF∥DE
∴∠FCD+∠D=180°
∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)
∵∠BCD=90°,∴∠BCF+∠FCD=90°
∴∠D―∠B=90°
故答案为:90°
【点睛】
本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.
14.4
【分析】
到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.
【详解】
解:
解析:4
【分析】
到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.
【详解】
解:到的距离是2的点,在与平行且与的距离是2的两条直线上;
到的距离是1的点,在与平行且与的距离是1的两条直线上;
以上四条直线有四个交点,故“距离坐标”是的点共有4个.
故答案为:4.
【点睛】
本题主要考查了到直线的距离等于定长的点的集合.
15.70°
【分析】
此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.
【详解】
解:如图所示,过点E,F分别作EG∥AB,FH∥AB.
∵EG∥AB,FH∥A
解析:70°
【分析】
此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.
【详解】
解:如图所示,过点E,F分别作EG∥AB,FH∥AB.
∵EG∥AB,FH∥AB,
∴∠5=∠ABE,∠3=∠1,
又∵AB∥CD,
∴EG∥CD,FH∥CD,
∴∠6=∠CDE,∠4=∠2,
∴∠1+∠2=∠3+∠4=∠BFD=35°.
∵BF平分∠ABE,DF平分∠CDE,
∴∠ABE=2∠1,∠CDE=2∠2,
∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.
故答案为70°.
【点睛】
本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.
16.①②③
【分析】
根据平行线的性质和∠ABO=40°,由两直线平行,同旁内角互补,可计算出∠BOC的度数,再根据角平分线的性质,可计算出∠BOC的度数,根据角平分线的性质可得出∠BOE的度数,可判断
解析:①②③
【分析】
根据平行线的性质和∠ABO=40°,由两直线平行,同旁内角互补,可计算出∠BOC的度数,再根据角平分线的性质,可计算出∠BOC的度数,根据角平分线的性质可得出∠BOE的度数,可判断①是否正确.根据OF⊥OE,由∠BOE的度数计算出∠BOF的度数,根据两直线平行,内错角相等的性质,得到∠BOD的度数,可计算出∠3的度数,可得出结论②是否正确,由②中的结论可判断③是否正确.根据平行线的性质,可得到∠OPB=90°,可计算出∠POB的度数,可得出④结论是否正确.
【详解】
解:∵AB∥CD,∠ABO=40°,
∴∠BOC=180°﹣∠ABO=180°﹣40°=140°,
∵OE平分∠BOC,
∴∠B0E=∠BOC==70°,
故结论①正确;
∵OF⊥OE,∠B0E=70°,
∴∠BOF=90°﹣70°=20°,
∵AB∥CD,∠ABO=40°,
∴∠BOD=∠ABO=40°,
∴∠FOD=∠BOD﹣∠BOF=20°,
∴∠BOF=∠DOF,
∴OF平分∠BOD,
故结论②正确;
由②的结论可得,
∴∠1=∠2=20°,
故结论③正确;
∵OP⊥CD,
∴∠OPB=90°,
∴∠POB=90°﹣∠ABO=50°,
∵2∠3=2×20°=40°,
∴∠POB≠2∠3,
故结论④错误.
故答案为:①②③.
【点睛】
本题考查了平行线的性质、角平分线性质的应用,合理应用平行线的性质是解决本题关键.
17.72゜
【分析】
先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠D′FE,由平角的性质可求得∠CFD′的度数,即可得出答案.
【详解】
解:∵AB∥CD,
解析:72゜
【分析】
先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠D′FE,由平角的性质可求得∠CFD′的度数,即可得出答案.
【详解】
解:∵AB∥CD,
∴∠CFE=∠AEF,
又∵∠DFE=∠D′FE,∠CFE=2∠CFD′,
∴∠DFE=∠D′FE=3∠CFD′,
∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,
∴∠CFD′=36°,
∴∠AEF=∠CFE=2∠CFD′=72°.
故答案为:72°.
【点睛】
本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.
18.62°
【分析】
根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.
【详解】
解:由翻折的性质得:∠DED′=2∠DEF,
∵∠1=56°
解析:62°
【分析】
根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.
【详解】
解:由翻折的性质得:∠DED′=2∠DEF,
∵∠1=56°,
∴∠DED′=180°-∠1=124°,
∴∠DEF=62°,
又∵AD∥BC,
∴∠EFB=∠DEF=62°.
故答案为:62°.
【点睛】
本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.
19.60°或105°或135°
【分析】
(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;
(2)分情况画出图形,根据平行线的性质计算即可.
【详解】
解:(
解析:60°或105°或135°
【分析】
(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;
(2)分情况画出图形,根据平行线的性质计算即可.
【详解】
解:(1)在△ABC中,AC⊥BC,AE与AC重合,
则AE⊥BC,α=∠DEA-∠BAC=45°-30°=15°,
∴当α=15°时,BC⊥AE.
故答案为15;
(2)当BC∥AD时,
∠C=∠CAD=90°,
∴α=∠BAD=90°-30°=60°;
如图,当AC∥DE时,
∠E=∠CAE=90°,
则α=∠BAD=45°+60°=105°,
此时∠BAE=90°-30°=60°=∠B,
则AE∥BC;
如图,当AB∥DE时,
∠E=∠BAE=90°,
∴α=∠BAD=45°+90°=135°;
综上:符合条件的α为60°或105°或135°,
故答案为:(1)15;(2)60°或105°或135°.
【点睛】
本题考查了平行线的性质,三角板的角度计算,正确确定△ABC旋转的过程中可以依次出现几次平行的情况是关键.
20.120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
解析:120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
,
,
,
,
故答案为:.
【点睛】
本题考查了平行线的判定和性质,正确的识别图形是解题的关键.
三、解答题
21.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部
【分析】
(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.
(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.
【详解】
解:(1)①∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°,
∵∠BEG=36°,
∴∠HFG=18°.
故答案为:18°.
②结论:2∠BEG+∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°.
(2)如图2中,结论:2∠BEG-∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°-∠HFG=180°,
∴2∠BEG-∠HFG=90°.
【点睛】
本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°
【分析】
(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.
【详解】
解:(1)过E作EH∥AB,如图1,
∴∠BME=∠MEH,
∵AB∥CD,
∴HE∥CD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN﹣∠END.
如图2,过F作FH∥AB,
∴∠BMF=∠MFK,
∵AB∥CD,
∴FH∥CD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,
∴2∠BME+2∠END+∠BMF﹣∠FND=180°,
即2∠BMF+∠FND+∠BMF﹣∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
∵EQ∥NP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,
∵∠BME=60°,
∴∠FEQ=×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.
23.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.
【详解】
解:(1)过E作EHAB,如图1,
∴∠BME=∠MEH,
∵ABCD,
∴HECD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN−∠END.
如图2,过F作FHAB,
∴∠BMF=∠MFK,
∵ABCD,
∴FHCD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF−∠FND=180°,
∴2∠BME+2∠END+∠BMF−∠FND=180°,
即2∠BMF+∠FND+∠BMF−∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
∵EQNP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME,
∵∠BME=60°,
∴∠FEQ=×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.
24.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2
【分析】
(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;
(2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°;
(3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.
【详解】
解:(1)∵(α-35)2+|β-α|=0,
∴α=β=35,
∴∠PFM=∠MFN=35°,∠EMF=35°,
∴∠EMF=∠MFN,
∴AB∥CD;
(2)∠FMN+∠GHF=180°;
理由:由(1)得AB∥CD,
∴∠MNF=∠PME,
∵∠MGH=∠MNF,
∴∠PME=∠MGH,
∴GH∥PN,
∴∠GHM=∠FMN,
∵∠GHF+∠GHM=180°,
∴∠FMN+∠GHF=180°;
(3)的值不变,为2,
理由:如图3中,作∠PEM1的平分线交M1Q的延长线于R,
∵AB∥CD,
∴∠PEM1=∠PFN,
∵∠PER=∠PEM1,∠PFQ=∠PFN,
∴∠PER=∠PFQ,
∴ER∥FQ,
∴∠FQM1=∠R,
设∠PER=∠REB=x,∠PM1R=∠RM1B=y,
则有:,
可得∠EPM1=2∠R,
∴∠EPM1=2∠FQM1,
∴==2.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
25.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°-144°=100°;
(2)分别延长AC、CD交GH于点E、F,
∵AC平分且,
∴,
又∵MN//GH,
∴;
∵,
∵BD平分,
∴,
又∵
∴;
∴;
(3)设FB交MN于K,
∵,则;
∴
∵,
∴,,
在△FAK中,,
∴,
∴.
经检验:是原方程的根,且符合题意.
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
展开阅读全文