资源描述
QC成果交流材料攻关型
提高中卫—贵阳联络线管道工程
第六标段防腐层补口一次合格率
中国石油天然气管道工程有限公司
防腐QC小组
二零一三年五月
1
防腐QC小组 提高中卫—贵阳联络线管道工程第六标段防腐层补口一次合格率成果报告
目 录
一 小组概况 1
二 选题理由 2
三 设定目标 2
四 目标可行性分析 2
五 原因分析 5
六 要因确认 6
七 制定对策 12
八 按对策实施 15
九 效果检查 18
十 巩固措施 20
十一 总结与打算 21
1
防腐QC小组 提高中卫—贵阳联络线管道工程第六标段防腐层补口一次合格率成果报告
一 小组概况
成立时间:2008年1月
注册编号:2012-03
课题类型:攻关型
小组名称
本次课题活动情况
活动课题
注册时间
2012年1月
提高中卫—贵阳联络线管道工程
第六标段防腐层补口一次合格率
课题注册登记号:2012-03
防腐QC小组
出勤率98%
活动时间: 2012年1月~12月
序号
姓名
性别
学历
职称
组内分工
1
郑安升
男
硕研
工程师
组长,全面负责
2
郭娟丽
女
硕研
工程师
组员,制定对策、对策实施
3
李瑞花
女
本科
工程师
组员,选题
4
龚亮
男
本科
工程师
组员,效果检查
5
李建军
男
硕研
工程师
组员,要因确认
6
刘艳东
男
本科
工程师
组员,制定对策、对策实施
7
廖煜炤
男
硕研
工程师
组员,要因确认
8
王杰
女
本科
工程师
组员,对策实施
9
丁杰
男
硕研
工程师
组员,制定对策、对策实施
10
丁睿明
男
硕研
工程师
组员,技术支持
11
陈雪见
男
本科
工程师
组员,记录整理
12
李超建
男
本科
高级工程师
指导老师
小组成员
图1 小组概况
制图人:陈雪见 2012年1月14日
小组成员共12人,其中高工1人,工程师11人,平均年龄33岁(图1)。特聘国家级中级诊断师李超建老师作为指导老师,本次课题活动时间为2012年1月至12月,共活动10次。
二 选题理由
小组选题
提高中卫—贵阳联络线管道工程第六标段
防腐层补口一次合格率
中卫—贵阳联络线管道工程第六标段防腐补口一次合格率达到98%,争创优质工程。
项目部要求
小组成员对中卫—贵阳联络线管道工程第三标段BE和BF段防腐补口一次合格率进行了统计:
工程部位
补口数量(口)
一次验收合格量(口)
BE段
2887
2731
BF段
3942
3686
合计
6829
6417
第三标段BE和BF段防腐补口一次合格率仅为94.0%,满足不了项目部质量考核要求。
存在问题
三 设定目标
根据EPC项目部质量考核与争创优质工程的要求,小组本次活动的目标值设定为:补口一次合格率从93.9%提高到98%。
目标值
现状
图2 课题目标柱状图
制图人:李瑞花 2012年2月27日
四 目标可行性分析
分析一:
防腐QC小组对我单位承建的中卫—贵阳联络线管道工程第三标段5个县境内管道的防腐层补口一次合格率进行统计,调查表如表1所示。
表1 中卫—贵阳联络管道工程第三标段防腐层补口一次合格率情况调查表
工程区域
管道直径(mm)
长度(km)
补口数量(口)
一次合格率(%)
礼县(BE段)
1016
33
2887
94.6
西和县(BF段)
1016
45
3942
93.5
成县(BG段)
1016
36
3147
92.2
康县(BH段)
1016
86.4
7567
97.6
宁强县(CA段)
1016
25.2
2206
91.4
平 均 值
3950
93.9
制表人:李瑞花 2012年2月12日
小组根据上述统计表,绘制了柱状图。
图3 中卫—贵阳联络工程第三标段防腐层补口一次合格率柱状图
制图人:李瑞花 2012年2月12日
结论:中卫—贵阳第六标段管道局EPC项目部要求本标段的防腐补口一次合格率需达到98%以上,争创优质工程。但目前经过小组的调查(参见表1和图3),中卫—贵阳第三标段补口一次合格率平均值为93.9%,没有达到EPC项目部对于补口质量的要求。
分析二:
我公司承建的中卫—贵阳联络线工程第三标段共有19749道口,其中共有1029道口一次验收不合格。为了查明补口一次验收合格率低的症结所在,小组成员通过查阅施工记录,调查施工过程,对一次验收不合格的200处补口的形态进行统计。绘制补口不合格形态调查结果表,如表2。
表2 补口不合格形态调查结果表
序号
补口不合格形态
频数
频率(%)
累计频率(%)
1
热收缩带剥离
168
84
84
2
热收缩带翘边
17
8.5
92.5
3
热收缩带鼓泡
5
2.5
95
4
热收缩带开裂
4
2
97
5
热收缩带破损
4
2
99
6
其他
2
1
100
合 计
200
100
制表人:李瑞花 2012年2月21日
根据补口不合格形态调查结果表,绘制补口不合格形态排列图,如图4。
图4 补口不合格形态排列图
制图人:李瑞花 2012年2月21日
结论:从排列图可以看出热收缩带剥离是补口不合格的主要形态,占84%,是问题的症结。
分析三:
小组成员通过以下三点分析,确定目标的可行性:
(1)小组成员统计中卫—贵阳联络线工程第三标段补口一次合格率时,发现康县(BH段)7567道补口的合格率平均值达到97.6%,接近EPC项目部要求98%的目标值,因此通过QC活动完成目标值是可能的。
(2)热收缩带剥离是补口不合格的问题症结。小组成员通过对现阶段的技术水平进行调查发现,解决这个问题的80%是切实可行的,则防腐层补口合格率将提高至93.9%+(1-93.9%)×84%×80%=98%;
(3)小组成员均为具有丰富经验的防腐设计工程师,熟悉防腐补口的技术要求和施工工艺,并且聘请本公司国家级中级诊断师李超建为此次活动的指导人。
结论:我们有能力实现补口一次合格率达到98%的目标。
五 原因分析
小组成员召开内部会议,根据收集的资料,运用关联图对存在的原因进行分析,如图5所示。
图5 管道防腐层补口剥离关联图
制图人:王杰 2012年3月6日
从关联图可以看出,造成热收缩带剥离形态的共有8项末端原因。
六 要因确认
对原因分析得出的8项末端原因,QC小组成员逐条进行要因确认,如表3。
表3 要因确认表
序号
末端因素
确认内容
确认方法
确认依据
负责人
完成时间
1
磨料配比不合理
磨料粒径分布和硬度
施工调查、现场检测
粗糙度为40-90μm;清洁度不低于Sa2.5
李建军
廖煜炤
3月15日
2
PE表面未处理
PE表面粗糙度
现场检查、
施工记录调查
粗糙度在40-90μm之间
李建军
3月18日
3
回火不到位
热缩带收缩不均匀
现场调查
回火温度不低于130℃,时间不低于5分钟
丁睿明
3月24日
4
表面预热温度不合理
钢管预热温度
现场施工记录调查
预热温度应在55~65℃之间
廖煜炤
丁睿明
3月28日
5
底漆固体含量低
底漆固含量
现场调查
底漆固体含量应大于95%
廖煜炤
4月3日
6
加热时间与温度控制不当
热熔胶熔融状态
现场检测
热熔胶熔融率100%
郑安升
李建军
4月12日
7
恶劣环境缺少防护措施
防护措施
现场调查
是否采取防护措施
廖煜炤
4月21日
8
热收缩带产品质量不合格
底漆热特性和胶粘剂软化点
现场调查
底漆Tg大于95℃;胶软化点大于110℃
丁睿明
4月25日
制表人:李建军 2012年4月28日
末端原因一:磨料配比不合理
确认内容:磨料粒径分布和硬度
调查过程:磨料的粒径配比与硬度直接影响到钢管表面的清理等级和粗糙度。
磨料颗粒太小会造成清理等级不达标;颗粒太大会造成粗糙度超标;磨料硬度低造成破碎率高产生粉尘,降低清洁度。
图6 磨料粒径与清洁度对比图
小组成员李建军和廖煜炤查找了抽查的4个县境内管段防腐层补口不合格情况,磨料没有统一要求,粒径分布不均,硬度大小不等,致使粗糙度分布在20-160μm之间,清洁度为Sa2-Sa2.5。82%的补口粗糙度不在40-90μm之间,74%的清洁度低于Sa2.5。
调查结论:“磨料配比不合理”为要因。
末端原因二:PE表面未处理
验证内容:PE表面粗糙度
验证过程:小组成员李建军对158道补口的施工记录进行调查发现,124道口通过钢丝刷进行拉毛处理,34道口通过火焰烘烤后拉毛处理,全部补口的搭接部位防腐层都进行了表面处理,粗糙度均在40-90μm之间,满足设计要求。
图7 防腐层搭接部位粗糙度处理
调查结论:“PE表面未处理”为非要因。
末端原因三:回火不到位
验证内容:热缩带收缩是否均匀
验证过程:组员丁睿明对4个县境内管段防腐补口施工记录和施工现场进行统计,回火温度维持在132~142℃之间,回火温度全部超过操作说明规定的130℃,时间都不低于操作说明要求的5分钟,符合操作规程。
图8 热收缩带回火处理
调查结论:“回火不到位”为非要因。
末端原因四:表面预热温度控制不合理
验证内容:钢管预热温度
验证过程:组员廖煜炤、丁睿明对4个县境内管段防腐补口施工记录进行统计,最高预热温度为65℃,最低预热温度为57℃,大部分预热温度为58~63℃之间,符合操作规程规定的55~65℃。
图9 钢管预热温度测试
调查结论:“表面预热温度控制不合理”为非要因。
末端原因五:底漆固含量低
验证内容:底漆固含量
验证过程:组员廖煜炤对2个县境内管段补口用底漆进行调查,发现现场所用底漆均为无溶剂型,经查验第三方检测报告发现固含量最低为97.8%,最高为98.6%,全部大于技术规格书规定的95%。
图10 底漆实物图 图11 底漆第三方检测报告
调查结论:“底漆固含量低”为非要因。
末端原因六:加热时间与温度控制不当
确认内容:热熔胶熔融状态
调查过程:不同外界环境条件下,相同的加热时间热熔胶的熔融状态各不相同。
外界环境温度过低,必须延长热收缩带的加热时间,不然容易造成温度达不到要求从而导致热熔胶不能完全熔融,热收缩带局部胶与底漆分层。
图12 热收缩带局部界面剥离 图13 热收缩带完全界面剥离
组长郑安升和组员李建军调查了冬季施工的3个县境内管段防腐层补口不合格情况,通过调查施工记录发现,在约零下5℃环境下,平均每道口的施工时间与20℃环境下的平均施工时间大致相当;通过分别跟踪现场施工人员施工发现,不同人员加热热收缩带的时间也各不相同,针对管径1016mm的管道,加热收缩时间短的仅十几分钟、长的四十分钟。虽然从外观看,热收缩带收缩十分完美,但实际上热收缩带内部部分胶未完全熔融,存在分层现象,约占不合格热收缩带补口的76%。
调查结论:“加热时间与温度控制不当”为要因。
末端原因七:恶劣环境缺少防护措施
确认内容:是否采取防护措施
调查过程:组员廖煜炤通过对2个县境内管段补口施工现场进行检查,恶劣天气条件下多数采取搭工棚等临时防护措施,极少数情况未采取措施。
图14 采取工棚防护措施
调查结论:“恶劣环境缺少防护措施”为非要因。
末端原因八:产品质量不合格
验证内容:底漆热特性和胶粘剂软化点
验证过程:组员丁睿明通过对现场使用的热收缩带的质量检查,发现每箱热收缩带都带有质量合格证,并且通过查阅第三方检验报告,报告中底漆Tg为96.7℃,大于规定的95℃;胶软化点为123℃,大于规定的110℃,检测指标均满足要求,产品质量合格。
图15 产品质量合格证 图16 第三方检测报告
调查结论:“产品质量不合格”为非要因。
针对8条末端原因逐一调查、分析、验证,得出要因有两个:磨料配比不合理以及加热时间与温度控制不当。
七 制定对策
1、针对要因磨料配比不合理
磨料颗粒太小会造成清理等级不达标、颗粒太大会造成粗糙度超标;磨料硬度低造成破碎率高产生粉尘,降低清洁度。
为了使锚纹深度达到40~90μm之间,清洁度不低于Sa2.5,由组长郑安升牵头,小组成员郭娟丽、丁杰二人使用正交试验设计法安排试验并确定磨料成分配比与粒径尺寸。
1)试验目的:通过正交试验,找出最佳磨料成分配比与粒径尺寸。
2)确定考察的指标。
本考察的指标:锚纹深度(μm);清洁度(不低于Sa2.5为合格)。
3)挑因素,选水平,制定因素水平表。
通过分析磨料组成和对表面结果的影响因素,有三个因素需确定最佳条件:磨料含量(A)、石英砂粒径(B)和铜矿渣粒径(C)。
对于这三个要考察的因素,分别按具体情况选出要考察、比较的条件,制定因素水平表,见表4。
表4 因素水平表
因素
磨料成分配比(%)
石英砂粒径(mm)
铜矿渣粒径(mm)
位级一
石英砂90%+铜矿渣10%
1.4
1.15
位级二
石英砂85%+铜矿渣15%
1.7
0.85
位级三
石英砂70%+铜矿渣30%
1.1
1.0
制表人:郑安升 2012年4月15日
4)设计试验方案
本次试验有三个水平,三个因素,正交表L9(34)最多能安排4个3水平因素,本方案有3个因素,可用该表来安排。按照因素水平表中固定的三种因素顺序放到纵列上,每列上放一种,再把相应的水平,按照因素水平表所确定的关系对号入座,正交表见表5。
表5 正交表L9(34)
试验号
因素
磨料成分配比A
石英砂粒径B
铜矿渣粒径C
列号
1
2
3
1
1(90%+10%)
1(1.4)
3(1.0)
2
2(85%+15%)
1(1.4)
1(1.15)
3
3(70%+30%)
1(1.4)
2(0.85)
4
1(90%+10%)
2(1.7)
2(0.85)
5
2(85%+15%)
2(1.7)
3(1.0)
6
3(70%+30%)
2(1.7)
1(1.15)
7
1(90%+10%)
3(1.1)
1(1.15)
8
2(85%+15%)
3(1.1)
2(0.85)
9
3(70%+30%)
3(1.1)
3(1.0)
制表人:郑安升 2012年4月15日
5)实施试验方案
按照表6正交试验表的安排,进行了9次试验,试验结果见表6。
表6 配比试验结果表
试验计划
试验结果
试验号
因素
列号
磨料成分配比A
石英砂粒径B
铜矿渣粒径C
锚纹深度(μm)
清洁度
1
2
3
1
1(90%+10%)
1(1.4)
3(1.0)
38
合格
2
2(85%+15%)
1(1.4)
1(1.15)
67
合格
3
3(70%+30%)
1(1.4)
2(0.85)
114
合格
4
1(90%+10%)
2(1.7)
2(0.85)
39
合格
5
2(85%+15%)
2(1.7)
3(1.0)
72
不合格
6
3(70%+30%)
2(1.7)
1(1.15)
123
合格
7
1(90%+10%)
3(1.1)
1(1.15)
53
合格
8
2(85%+15%)
3(1.1)
2(0.85)
94
合格
9
3(70%+30%)
3(1.1)
3(1.0)
167
合格
位级1之和
133
219
243
位级1+位级2+位级3=770
=总和
位级2之和
233
237
250
位级3之和
404
314
277
极差R
271
95
34
制表人:郭娟丽 2012年5月3日
6)试验结果分析
a、直接看
从配方试验结果表可以直观看出,试验号为2号的锚纹深度为67μm,清洁度为合格;试验号为7号的锚纹深度为53μm,清洁度为合格;锚纹深度均在40~90μm之间,因此A2B1C1与A1B3C1均满足磨料成分配比和粒径尺寸要求。
b、简单计算
经过简单计算,得出A2B1C1为最佳磨料成分配比和粒径尺寸。
R值的大小决定因素的重要程度及排列次序。
RA=271>RB=95>RC=34,因素排列为A2B1C1。即磨料成分配比为石英砂85%+铜矿渣15%;石英砂粒径为1.4mm,铜矿渣粒径为1.15mm。
2、针对要因加热时间与温度控制不当
加热时间与温度控制不当会直接导致热熔胶无法完全熔融,即使仅部分少量面积热熔胶没有完全熔融,也可能会导致整个热收缩带内部剥离,剥离后的热收缩带PE基材会屏蔽管道的阴极保护电流,最终导致补口部位管道发生腐蚀。
图17局部内聚破坏 图 18完全失去粘结 图19 完全界面剥离
由于标准规定热收缩带热熔胶的维卡软化点不小于110℃,不同厂家热熔胶的维卡软化点各不相同,但基本在120℃左右,低的不到115℃,高的可达125℃,因此在加热过程中热收缩带收缩温度应该不小于125℃,并保证一定的加热时间。
为了确保在实际施工加热过程中热熔胶可以完全熔融,组员丁杰、刘艳东进行了一系列模拟实验,模拟不同外界温度条件下需要的加热时间及加热温度。根据实验结果,针对外界不同的温度条件,筛选出最佳的温度与时间配比,并将作为对策进一步实施。
表7 不同外界温度条件下推荐加热时间表(管径1016mm,2人2枪)
外界温度(℃)
预热温度(℃)
预热时间
(min)
加热温度(℃)
加热时间(min)
回火时间(min)
总完成时间
min
> 40
60~70
2~3
150~170
24~31
3~5
40~47
15 ~ 40
55~65
3~4
140~160
30~38
5~7
45~55
0 ~ 15
50~65
4~6
130~150
37~47
6~8
55~67
-15 ~ 0
50~65
6~7
130~150
46~57
7~9
66~77
< -15
45~60
7~9
125~145
56~67
8~10
75~86
制表人:刘艳东 2012年5月14日
针对要因,小组成员按照“5W1H”原则分别制定对策、确定目标、并形成具体措施,对策实施表如表8。
表8 对策实施表
序号
主要
原因
对策
目标
措施
地点
时 间
负责人
1
磨料配比不合理
磨料成分配比为石英砂85%+铜矿渣15%;石英砂粒径为1.4mm,铜矿渣粒径为1.15mm
粗糙度为40~90μm;清洁度不低于Sa2.5
1、设计采用最佳磨料配比和粒径尺寸
2、现场抽查样品送实验室检测
3、施工过程中加强检测
4、表面处理效果检测
绥阳县
(FD段)红花岗区(FE段)施工现场
5月至9月
郑安升 郭娟丽
丁杰
2
加热时间与温度控制不当
根据不同的环境温度,选择合适的加热时间(详见表7)
热熔胶熔融率100%
1、施工人员严格按照表7规定的参数施工
2、设计人员现场监督
3、现场检测
绥阳县
(FD段)红花岗区(FE段)施工现场
5月至9月
丁杰
刘艳东
制表人:刘艳东 2012年9月2日
八 按对策实施
针对以上的要因分析和制定的对策,2012年5月至9月QC小组成员对中卫—贵阳联络线管道工程第六标段绥阳县(FD段)和红花岗区(FE段)进行了对策实施。
实施一 调整磨料成分配比和粒径尺寸
1、设计采用最佳磨料配比和粒径尺寸
在设计文件中,明确规定磨料成分配比为石英砂85%+铜矿渣15%、石英砂粒径为1.4mm,铜矿渣粒径为1.15mm,并经实验室和现场测试,由小组成员郭娟丽和丁杰在现场要求施工单位严格按此执行。
2、现场抽查样品送实验室检测
对设计选用的磨料和以往普通磨料在实验室进行疲劳寿命测试,通过残余量推断磨料的破碎率,从而判断其对清洁度的影响。经过试验发现,设计选用的磨料在转数500次时的残余量为普通磨料的3倍以上,硬度和抗疲劳性能优异,能大大提高表面处理的清洁度。
表9 磨料实验对比分析表
转数(次)
残留量
产品
0
100
200
300
400
500
设计选用磨料
100
97.6
95.4
92.5
84.7
68.4
普通磨料
100
88.7
75.4
58.1
40.6
20.6
制表人:郭娟丽 2012年9月4日
图20 磨料疲劳寿命对比
制图人:郭娟丽 2012年9月4日
3、施工过程中对加强磨料检测
在设计文件中,明确要求对于磨料的成分配比与粒径尺寸进行抽检,所有检测项目都应完成出厂检测。现场可采用简化方法进行检测,即通过对单位质量内的磨料颗粒数量进行抽检,确定其是否满足成分配比和粒径尺寸要求。通过检测发现,所用磨料满足设计要求。
表10 磨料现场检测统计表
磨料成分
尺寸(mm)
标准数量(个/公斤)
检测数量(个/公斤)
检测结果
石英砂
1.4
36000~38000
36420
满足要求
铜矿渣
1.15
52000~54000
53160
满足要求
制表人:丁杰 2012年9月8日
4、表面处理效果检测
施工单位现场采用设计要求的磨料对管体表面进行处理,小组成员郭娟丽和丁杰对其处理质量进行检测,锚纹深度为60μm,清洁度为Sa3,全部满足设计要求。
图21 锚纹深度测试
结论:粗糙度为60μm,在40~90μm之间;清洁度为Sa3,不低于Sa2.5。
目标实现
实施二 不同外界环境条件下控制加热时间及温度
针对中卫—贵阳联络线管道工程第六标段绥阳县(FD段)和红花岗区(FE段),组员王杰、刘艳东计算了不同外界温度下热收缩带施工需要的加热时间,要求现场施工严格按规定进行,并在现场对施工过程进行监督,做好详细施工记录,包括外界温度、预热温度、预热时间、加热温度、加热时间、回火时间等。施工单位严格按照设计要求的加热时间及温度进行施工,通过检测发现,施工不合格补口多为开裂、破损等原因,通过整体剥开检测发现,不同环境温度下施工的热收缩带热熔胶均完全熔融, 熔融率达到100%,具体统计结果见表11。
表11 不同外界温度条件下补口施工情况表(管径1016mm,2人2枪)
外界温度(℃)
加热温度(℃)
加热时间(min)
总完成时间(min)
检查补口数量 (道)
合格率(热熔胶完全熔融)
25 ~ 35
约155
约35
约52
80
100%
-5 ~ 10
约145
约45
约65
60
100%
-17 ~ 0
约140
约56
约78
50
100%
制表人:王杰 2012年9月16日
结论:热熔胶完全熔融,熔融率达到100%。
目标实现
九 效果检查
1、目标完成情况
2012年QC小组成员对中卫—贵阳联络线管道工程第六标段所有的防腐补口一次合格率进行了检测,结果如表12所示。
表12 中贵管道工程第六标段防腐层补口一次合格率统计表
工程区域
长度(km)
补口数量(口)
不合格数量(口)
补口一次合格率%
习水县(FA段)
58
5085
74
98.5
桐梓县(FB段)
44.5
3894
62
98.4
汇川区(FC段)
44
3677
58
98.4
绥阳县(FD段)
3
253
4
98.4
红花岗区(FE段)
7
663
6
99.1
遵义县(FF段)
58.5
4975
56
98.9
息烽县(FG段)
52
4378
48
98.9
修文县(FH段)
28
2490
40
98.4
白云区(FI段)
10
895
8
99.1
金阳新区(FJ段)
19
1633
26
98.4
花溪区(FK段)
23
1997
23
98.8
平坝县(FL段)
9
752
8
98.9
总计
413
—
平均值
—
98.7
制表人:龚亮 2012年12月19日
根据调查表,中卫—贵阳联络线管道工程第六标段的管段的防腐补口一次合格率平均为98.7%,最高合格率为99.1%,最低合格率为98.4%。
活动后
目标值
现状
图22 目标实现成果图
制图人:龚亮 2012年12月19日
中卫—贵阳联络线管道工程第六标段管道防腐补口一次合格率达到98.7%,目标实现了。
2、经济效益
对国内某重点工程900公里管道的78750道补口进行检测发现,有7842道补口质量不合格,管理单位已经委托我公司做完相关修复设计。每道不合格补口重新修复费用平均为7994元,费用总计7994元/道×7842道=6269万元人民币,平均费用为6.97万元/公里。
措施实施后,356公里管道共有413道不合格补口。修复费用为7994元/道×413道=330.15万元人民币,平均费用为0.93万元/公里。对策实施前后每公里节约费用6.04万元,节省总费用2150.24万元。
图23 某工程补口修复
表13 对策实施前后经济效益对比
名称
管道长度(km)
补口数量(口)
不合格补口数量(口)
不合格比例(%)
单道口修复费用
(万元)
修复总费用
(万元)
单公里修复费用
(万元)
每公里节省投资
(万元)
节省总投资
(万元)
措施实施前
900
78750
7842
9.9
0.7994
6269
6.97
—
—
措施实施后
356
30692
413
1.34
0.7994
330.15
0.93
6.04
2150.2
制表人:龚亮 2012年12月18日
3、技术效益
本次QC小组活动经过各方面的调查和了解,对要因进行分析和论证,通过调整磨料成分配比和粒径尺寸以及根据环境温度不同选择合适的加热时间等措施,使管道防腐层补口一次合格率得以明显提高,大大提供施工效率,为今后类似工程的设计、施工积累了宝贵经验。
4、意外收获
在9月新疆境内某重点工程补口大修时,由于是在役管道现场修复,表面处理合格率较低,返工率较高。主要问题就是磨料性能不好,后期改用QC小组试验的2号配方,磨料成分配比为石英砂85%+铜矿渣15%;石英砂粒径为1.4mm,铜矿渣粒径为1.15mm。经过现场检测,比之前应用的磨料性能大幅提高,表面处理一次合格率提高约15%,目前该工程的补口修复已完成。
十 巩固措施
QC小组活动成功后,我们将此次活动成果归纳整理,写入了中国石油天然气股份公司标准《埋地钢质管道压敏型热收缩带防腐补口技术规定》,并形成了一个公司内部的设计统一规定,从而确保了此成果切实运用于以后的管道防腐层补口中。
十一 总结与打算
通过QC小组活动,小组成员集思广益,提高了分析并解决问题的能力。同时,通过本次QC活动,小组成员工作的积极性、能动性、创造性得到不同程度的提高,增强了小组的凝聚力和团队合作,小组QC工具应用能力增强。详见自我评价表(表14):
表14 自我评价表
序号
评价内容
活动前(分)
活动后(分)
1
团队精神
90
95
2
质量意识
95
98
3
进取精神
90
95
4
QC工具运用能力
90
95
5
工作热情干劲
90
95
6
改进意识
85
90
制表人:郑安升 2012年12月19日
鉴于目前防腐层补口检测效率不高,下一步小组打算针对防腐层补口检测方法和效率开展活动,本小组拟选定下一个活动课题为《提高管道防腐层补口检测效率》。
27
展开阅读全文