资源描述
福州市七年级下册数学期末试题及答案解答
一、选择题
1.下列计算正确的是( )
A.a3.a2=a6 B.a2+a4=2a2 C.(a3)2=a6 D.
2.下列等式由左边到右边的变形中,属于因式分解的是( )
A.(a﹣2)(a+2)=a2﹣4
B.8x2y=8×x2y
C.m2﹣1+n2=(m+1)(m﹣1)+n2
D.x2+2x﹣3=(x﹣1)(x+3)
3.已知关于x,y的方程组的解为,则a,b的值是( )
A. B. C. D.
4.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )
A.4种 B.5种 C.6种 D.7种
5.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=( )
A.ab2 B.a+b2 C.a2b3 D.a2+b3
6.如图,下列条件:中能判断直线的有( )
A.5个 B.4个 C.3个 D.2个
7.如图,A,B,C,D中的哪幅图案可以通过图案①平移得到( )
A. B. C. D.
8.若多项式是完全平方式,则的值为( )
A.4 B. C. D.
9.一个三角形的两边长分别是和,则第三边的长可能是( )
A. B. C. D.
10.关于的不等式组恰有三个整数解,那么的取值范围为( )
A. B. C. D.
二、填空题
11.一个五边形所有内角都相等,它的每一个内角等于_______.
12.计算:___________.
13.有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为_________.
14.已知2x=3,2y=5,则22x+y-1=_____.
15.计算:5-2=(____________)
16.若是二元一次方程2x﹣3y﹣5=0的一组解,则4a﹣6b=_____.
17.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于_____cm2
18.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.
19.下列各数中:,,,,,是无理数的有______个.
20.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=_____.
三、解答题
21.先化简,再求值:(2a﹣b)2﹣(a+1﹣b)(a+1+b)+(a+1)2,其中a=,b=﹣2.
22.把下列各式分解因式:
(1)4x2-12x3
(2)x2y+4y-4xy
(3)a2(x-y)+b2(y-x)
23.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)
理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=∠ABC,_________________,
在ΔABC中,∠A+∠ABC+∠ACB=180º.
∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,
∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.
(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.
(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;
(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.
24.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.
(1)问草莓、苹果各购买了多少箱?
(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓箱,苹果箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.
①若老徐在甲店获利600元,则他在乙店获利多少元?
②若老徐希望获得总利润为1000元,则?
25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.
26.将下列各式因式分解
(1)xy-4xy
(2)x-8xy+16y
27.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?
28.计算:
(1) (2)
(3) (4)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
根据同底幂的运算法则依次判断各选项.
【详解】
A中,a3.a2=a5,错误;
B中,不是同类项,不能合并,错误;
C中,(a3)2=a6,正确;
D中,,错误
故选:C.
【点睛】
本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.
2.D
解析:D
【分析】
认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.
【详解】
解:A.不是乘积的形式,错误;
B.等号左边的式子不是多项式,不符合因式分解的定义,错误;
C.不是乘积的形式,错误;
D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;
故选:D.
【点睛】
本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.
3.A
解析:A
【分析】
把代入方程组得到关于a,b的二元一次方程组,解之即可.
【详解】
解:把代入方程组得:
,
解得:,
故选A.
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.
4.B
解析:B
【分析】
设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.
【详解】
解:设1元和5元的纸币分别有x、y张,
则x+5y=20,
∴x=20-5y,
而x≥0,y≥0,且x、y是整数,
∴y=0,x=20;
y=1,x=15;
y=2,x=10;
y=3,x=5;
y=4,x=0,
共有5种换法.
故选:B.
【点睛】
此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.
5.A
解析:A
【分析】
将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.
【详解】
解:∵4m=a,8n=b,
∴22m+6n=22m×26n
=(22)m•(23)2n
=4m•82n
=4m•(8n)2
=ab2,
故选:A.
【点睛】
本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.
6.B
解析:B
【分析】
根据平行线的判定定理对各小题进行逐一判断即可.
【详解】
解:①∵∠1=∠3,∴l1∥l2,故本小题正确;
②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;
③∵∠4=∠5,∴l1∥l2,故本小题正确;
④∠2=∠3不能判定l1∥l2,故本小题错误;
⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.
故选B.
【点睛】
本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.
7.D
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
通过图案①平移得到必须与图案①完全相同,角度也必须相同,
观察图形可知D可以通过图案①平移得到.
故答案选:D.
【点睛】
本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.
8.C
解析:C
【分析】
根据完全平方式的特征解答即可.
【详解】
∵是一个完全平方式,
∴=(a±2b)2,
而(a±2b)2=a2±4ab+,
∴k=±4,
故选C.
【点睛】
本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.
9.C
解析:C
【分析】
根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..
【详解】
设第三边为x,由三角形三条边的关系得
4-2<x<4+2,
∴2<x<6,
∴第三边的长可能是4.
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.
10.C
解析:C
【分析】
首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m的不等式,求得m的范围.
【详解】
解:
解不等式①,得x>m.
解不等式②,得x3.
∴不等式组得解集为m<x3.
∵不等式组有三个整数解,
∴.
故选C.
【点睛】
本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
二、填空题
11.【分析】
根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.
【详解】
每一个外角的度数是:360°÷5=72°,
每一个内角度数是:180°−72°
解析:
【分析】
根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.
【详解】
每一个外角的度数是:360°÷5=72°,
每一个内角度数是:180°−72°=108°.
故答案为:108°.
【点睛】
本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.
12.【分析】
根据积的乘方进行计算即可.
【详解】
解:,
故答案为:.
【点睛】
此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.
解析:
【分析】
根据积的乘方进行计算即可.
【详解】
解:,
故答案为:.
【点睛】
此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.
13.11
【分析】
设A的边长为a,B的边长为b,根据阴影面积得到关于a、b的方程组,求出方程组的解即可得到答案.
【详解】
设A的边长为a,B的边长为b,
由图甲得,即,
由图乙得,得2ab=10,
解析:11
【分析】
设A的边长为a,B的边长为b,根据阴影面积得到关于a、b的方程组,求出方程组的解即可得到答案.
【详解】
设A的边长为a,B的边长为b,
由图甲得,即,
由图乙得,得2ab=10,
∴,
故答案为:11.
【点睛】
此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键.
14.【分析】
根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.
【详解】
解:22x+y-1=22x×2y÷2
=(2x)2×2y÷2
=9×5÷2
=
故答案为
解析:
【分析】
根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.
【详解】
解:22x+y-1=22x×2y÷2
=(2x)2×2y÷2
=9×5÷2
=
故答案为:.
【点睛】
本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.
15.【分析】
直接根据负整数指数幂的运算法则求解即可.
【详解】
,
故答案为:.
【点睛】
本题考查了负整数指数幂的运算法则,比较简单.
解析:
【分析】
直接根据负整数指数幂的运算法则求解即可.
【详解】
,
故答案为:.
【点睛】
本题考查了负整数指数幂的运算法则,比较简单.
16.10
【分析】
已知是二元一次方程2x﹣3y﹣5=0的一组解,将代入二元一次方程2x﹣3y﹣5=0中,即可求解.
【详解】
∵是二元一次方程2x﹣3y﹣5=0的一组解
∴2a-3b=5
∴4a-6b
解析:10
【分析】
已知是二元一次方程2x﹣3y﹣5=0的一组解,将代入二元一次方程2x﹣3y﹣5=0中,即可求解.
【详解】
∵是二元一次方程2x﹣3y﹣5=0的一组解
∴2a-3b=5
∴4a-6b=10
故答案为:10
【点睛】
本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.
17.1
【分析】
由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.
【详解】
解:如图,点是的中点,
的底是,的底是,即,而高相等,
,
是的中点,
,,
,
解析:1
【分析】
由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.
【详解】
解:如图,点是的中点,
的底是,的底是,即,而高相等,
,
是的中点,
,,
,
,且,
,
即阴影部分的面积为.
故答案为1.
【点睛】
本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.
18.60
【解析】
【分析】
先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.
【详解】
∵AB∥CD,
∴∠C与它的同位角相等,
根据三角形的外角等于
解析:60
【解析】
【分析】
先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.
【详解】
∵AB∥CD,
∴∠C与它的同位角相等,
根据三角形的外角等于与它不相邻的两内角之和,
所以∠A+∠E=∠C=60度.
故答案为60.
【点睛】
本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
19.【分析】
根据无理数的定义判断即可.
【详解】
解:在,,,,五个数中,无理数有,,两个.
故答案为:2.
【点睛】
本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.
解析:
【分析】
根据无理数的定义判断即可.
【详解】
解:在,,,,五个数中,无理数有,,两个.
故答案为:2.
【点睛】
本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.
20.10cm
【分析】
依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.
【详解】
解:∵AE是△ABC的边BC上的中线,
解析:10cm
【分析】
依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.
【详解】
解:∵AE是△ABC的边BC上的中线,
∴CE=BE,
又∵AE=AE,△ACE的周长比△AEB的周长多2cm,
∴AC−AB=2cm,即AC−8cm=2cm,
∴AC=10cm,
故答案为10cm.
【点睛】
本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.
三、解答题
21.;13
【分析】
原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a与b的值代入计算即可求出值.
【详解】
解:原式=4a2﹣4ab+b2﹣(a2+2a+1﹣b2)+a2+2a+1
=4a2﹣4ab+b2﹣a2﹣2a﹣1+b2+a2+2a+1
=4a2﹣4ab+2b2,
当a=,b=﹣2时,原式=1+4+8=13.
【点睛】
此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.
22.(1)4x2(1-3x)(2)y(x-2)2(2)(x-y)(a+b)(a-b)
【分析】
(1)直接利用提公因式法分解因式即可;
(2)先提取公因式,然后利用完全平方公式分解因式即可;
(3)先提取公因式,然后利用平方差公式分解因式即可.
【详解】
(1);
(2);
(3).
【点睛】
本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.
23.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.
【分析】
【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;
【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;
【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;
【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E,于是可得结果;若∠EAF=4∠F,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E即可求出结果,进而可得答案.
【详解】
解:【探究1】理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=∠ABC,∠2=∠ACB,
在ΔABC中,∠A+∠ABC+∠ACB=180º.
∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,
∴∠BOC=180º-(∠1+∠2)=180º-(90º-∠A)=90º+∠A;
故答案为:∠2=∠ACB,90º-∠A;
【探究2】∠BOC=90°﹣∠A;理由如下:
如图2,由三角形的外角性质和角平分线的定义,∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),
在△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB
=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),
=180°﹣(∠A+∠ACB+∠A+∠ABC),
=180°﹣(180°+∠A),
=90°﹣∠A;
【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得:∠G=,
∴∠GCD+∠GDC=45°,
∵CE、DE分别是∠ACD和∠BDC的角平分线,
∴∠1=∠ACD=,∠2=∠BDC=,
∴∠1+∠2=+=,
∴;
故答案为:22.5°;
【拓展】如图4,∵AE、AF是∠BAO和∠OAG的角平分线,
∴∠EAQ+∠FAQ=,
即∠EAF=90°,
在Rt△AEF中,若∠EAF=4∠E,则∠E=22.5°,
∵∠EOQ=∠E+∠EAQ,∠BOQ=2∠EOQ,∠BAO=2∠EAQ,
∴∠BOQ=2∠E+∠BAO,
又∠BOQ=∠BAO+∠ABO,
∴∠ABO=2∠E=45°;
若∠EAF=4∠F,则∠F=22.5°,
则由【探究2】知:,∴ ∠ABO=135°,
∵∠ABO<∠BOQ=60°,∴此种情况不存在;
若∠F=4∠E,则∠E=18°,
由第一种情况可知:∠ABO=2∠E,∴∠ABO=36°;
综上,∠ABO=45°或36°;
故答案为:45°或36°.
【点睛】
本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.
24.(1)草莓35箱,苹果25箱;(2)①340元,②53或52
【分析】
(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;
(2)①由题意列二元一次方程,可得到,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a、b的二元一次方程,整理可得,再根据a、b的取值范围及a一定是4的整数倍,即可求出结果;
【详解】
(1)解:设草莓购买了x箱,苹果购买了y箱,根据题意得:
,
解得.
答:草莓购买了35箱,苹果购买了25箱;
(2)解:①若老徐在甲店获利600元,则,
整理得:,
他在乙店的获利为:,
=,
=,
=340元;
②根据题意得:,
整理得:,
得到,
∵a、b均为正整数,
∴a一定是4的倍数,
∴a可能是0,4,8…,
∵,,
∴当且仅当a=32,b=21或a=25,b=24时成立,
∴或.
故答案为340元;53或52.
【点睛】
本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.
25.∠DAC=40°,∠BOA=115°
【解析】
试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.
解:∵AD是BC边上的高,
∴∠ADC=90°,
又∵∠C=50°,
∴在△ACD中,∠DAC=90°-∠C=40°,
∵∠BAC=60°,∠C=50°,
∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,
又∵AE、BF分别是∠BAC 和∠ABC的平分线,
∴∠BAO=∠BAC=30°,∠ABO=∠ABC=35°,
∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.
26.(1);(2).
【分析】
(1)提出公因式即可得出答案;
(2)先利用完全平方公式,然后再利用平方差公式分解即可.
【详解】
解:(1);
(2).
【点睛】
本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.
27.2辆大货车与1辆小货车可以一次运货11吨
【分析】
设1辆大货车一次运货x吨,1辆小货车一次运货y吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,将其代入中即可求出结论.
【详解】
设1辆大货车一次运货x吨,1辆小货车一次运货y吨
由题意得:
解得:
则
答:2辆大货车与1辆小货车可以一次运货11吨.
【点睛】
本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.
28.(1)4;(2);(3)-4ab+9b2;(4)m2-4n2+12n-9.
【分析】
(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;
(2)原式利用积的乘方运算法则计算,合并即可得到结果;
(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;
(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.
【详解】
解:(1)原式=-1+1+4=4;
(2)原式=;
(3)原式=4a2-12ab+9b2-4a2+8ab=-4ab+9b2;
(4)原式=m2-(2n-3)2=m2-4n2+12n-9.
【点睛】
此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.
展开阅读全文