1、知识点一、二次函数的概念和图像 1、二次函数的概念一般地,如果特,特别注意a不为零那么y叫做x 的二次函数。叫做二次函数的一般式。2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。抛物线的主要特征:有开口方向;有对称轴;有顶点。3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线与坐标轴的交点:当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。当抛物线与x轴只有一个交点或无交点
2、时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀- 一般 两根 三顶点(1)一般 一般式:(2)两根 当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。a 的绝对值越大,抛物线的开口越小。(3)三顶点 顶点式:知识点三、二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。如果自变
3、量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,当时,;如果在此范围内,y随x的增大而减小,则当时,当时,。知识点四、二次函数的性质 1、二次函数的性质函数二次函数图像a0a0 y 0 x y 0 x 性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而增大,简记左减右增;(4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)
4、在对称轴的左侧,即当x时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=时,y有最大值,2、二次函数中,的含义:表示开口方向:0时,抛物线开口向上 0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当0时,图像与x轴没有交点。知识点五 中考二次函数压轴题常考公式(必记必会,理解记忆)1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法) y如图:点A坐标为(x1,y1)点B坐标为(x2,y2)则AB间的距离,即线段AB的长度为 A 0 x B2,二次函数图象的平移 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移
5、到处,具体平移方法如下: 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”函数平移图像大致位置规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)特别记忆-同左上加 异右下减 (必须理解记忆)说明 函数中ab值同号,图像顶点在y轴左侧同左,a b值异号,图像顶点必在Y轴右侧异右向左向上移动为加左上加,向右向下移动为减右下减3、 直线斜率: b为直线在y轴上的截距4、直线方程:4、 两点 由直线上两点确定的直线的两点式方程,简称两式: 此公式有多种变形 牢记 点斜 斜截 直线的斜截式方程,简称斜截式: ykxb(k0)截距 由直线在轴
6、和轴上的截距确定的直线的截距式方程,简称截距式:牢记 口诀 -两点斜截距-两点 点斜 斜截 截距5、设两条直线分别为,: : 若,则有且。 若6、 点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离: 7、 抛物线中, a b c,的作用 (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧. 口诀 - 同左 异右 (3)的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;
7、 ,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配
8、方法作用最关键。关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是;关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是;关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是关于顶点对称 关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是关于点对称 关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛
9、物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。解一元二次不等式: 首先化成一般式,构造函数第二站。 判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。 小于零
10、将没有解,开口向下正相反。 13.1 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 调整系数随其后,使其成为最简比。 确定参数abc,计算方程判别式。 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。 用常规配方法解一元二次方程: 左未右已先分离,二系化“1”是其次。 一系折半再平方,两边同加没问题。 左边分解右合并,直接开方去解题。 该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程: 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。 完全平方等常数,间接配方显优势 【注】 恒等式 解一元二次方程: 方程没有一次项,直接开方最理想。 如
11、果缺少常数项,因式分解没商量。 b、c相等都为零,等根是零不要忘。 b、c同时不为零,因式分解或配方, 也可直接套公式,因题而异择良方。二次函数: 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。 【注】基础抛物线