1、更多免费资源请登录荣德基官网()下载或加官方QQ获取11.1.3 立方根 一、学习目标: 1、 了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、体会一个数的立方根的惟一性, 分清一个数的立方根与平方根的区别。二、重点难点重点:立方根的概念和求法。难点:立方根与平方根的区别。三、合作探究1.平方根是如何定义的 ? 平方根有哪些性质?2、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是 3、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是 4、立方根的概念:
2、如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的 ).换句话说,如果 ,那么x叫做a的立方根或三次方根. 记作: .读作“ ”,其中a是 ,3是 ,且根指数3 省略(填能或不能),否则与平方根混淆.5、开立方求一个数的 的运算叫做开立方, 与开立方互为逆运算(小组合作学习)6、立方根的性质(1)教科书77页探究(2)总结归纳:正数的立方根是 数,负数的立方根是 数,0的立方根是 .(3)思考:每一个数都有立方根吗? 一个数有几个立方根呢?(4)平方根与立方根有什么不同?被开方数平方根立方根正数负数零四、精讲精练例1、 求下列各式的值: (1); (2) 例2、求满足下列各式的未知数x
3、:(1) 练习1. 判断正误:(1)、25的立方根是 5 ;( )(2)、互为相反数的两个数,它们的立方根也互为相反数;( )(3)、任何数的立方根只有一个;( )(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )(6)、一个数的立方根不是正数就是负数.( )(7)、64没有立方根.( ) 2、(1) 64的平方根是_立方根是_. (2) 的立方根是_. (3) 是_的立方根. (4) 若 ,则 x=_, 若 ,则 x=_. (5) 若 , 则x的取值范围是_, 若 有意义,则x的取值范围是_. 3、计算:(1) 4、已知x-2的平方根是,的立方根是4,求的值.五、课堂小结:正数、负数、0都有立方根六、作业 :P7 3 2