资源描述
7.3平行线的判定
专题 平行线的判定的实际应用
1.如图,台球运动中,如果母球P击中边点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹.那么母球P经过的路线BC与PA一定平行.请说明理由.
2.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,要求
AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB与CD肯定是平行的,你知道什么原因吗?
3.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度 假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.
(1)求道路CD与CB的夹角;
(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;
(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.
答案:
1.解:∵∠PAD=∠BAE,∠PAB=180°-∠PAD-∠BAE,
∴∠PAB=180°-2∠BAE.
同理,∠ABC=180°-2∠ABE.
∵∠BAE+∠ABE=90°,
∴∠PAB+∠ABC=360°-2(∠BAE+∠ABE)=180°.
∴BC∥PA.
2.解:AB与CD平行.
理由是:延长AE交DC于M,
∵∠AED=90°,∠EDC=55°,
∴∠AMD=∠AED-∠EDC=35°,
∵∠BAE=35°,
∴∠BAE=∠AMD,
∴AB∥DC.
3.解:(1)如图所示,过C作CM⊥CD交AB与M,则∠DCM=90°,∠MCB=30°,
∴CD与CB的夹角为90°+30°=120°;
(2)环湖路的长=AB+BC-CD=3km;
(3)不能判定DC∥AB.
加上的条件可以是:CA平分∠DCB.
证明:∵AB=AC,
∴∠CAB=∠ACB,
∵CA平分∠DCB,
∴∠DCA=∠ACB,
∴∠DCA=∠CAB,
∴DC∥AB.
展开阅读全文