1、2 012年全国中考数学分类解析汇编专题13:实践操作、探究类问题一、选择题1. (2012重庆市4分)已知二次函数的图象如图所示对称轴为。下列结论中,正确的是【 】A B C D【答案】D。【考点】二次函数图象与系数的关系。【分析】A、二次函数的图象开口向上,0。二次函数的图象与轴交于负半轴,0。二次函数的图象对称轴在轴左侧,0。0。故本选项错误。B、二次函数的图象对称轴:,。故本选项错误。C、从图象可知,当时,。故本选项错误。D、二次函数的图象对称轴为,与轴的一个交点的取值范围为11,二次函数的图象与轴的另一个交点的取值范围为22。当时,即。故本选项正确。故选D。2. (2012浙江台州4
2、分)如图,菱形ABCD中,AB=2,A=120,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【 】A1 B C 2 D1【答案】B。【考点】菱形的性质,线段中垂线的性质,三角形三边关系,垂直线段的性质,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。【分析】分两步分析: (1)若点P,Q固定,此时点K的位置:如图,作点P关于BD的对称点P1,连接P1Q,交BD于点K1。 由线段中垂线上的点到线段两端距离相等的性质,得 P1K1 = P K1,P1K=PK。 由三角形两边之和大于第三边的性质,得P1KQKP1Q= P1K1Q K1= P K1Q K1。 此时
3、的K1就是使PK+QK最小的位置。 (2)点P,Q变动,根据菱形的性质,点P关于BD的对称点P1在AB上,即不论点P在BC上任一点,点P1总在AB上。 因此,根据直线外一点到直线的所有连线中垂直线段最短的性质,得,当P1QAB时P1Q最短。 过点A作AQ1DC于点Q1。 A=120,DA Q1=30。 又AD=AB=2,P1Q=AQ1=ADcos300=。 综上所述,PK+QK的最小值为。故选B。3. (2012浙江义乌3分)如图,已知抛物线y1=2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y
4、2例如:当x=1时,y1=0,y2=4,y1y2,此时M=0下列判断:当x0时,y1y2; 当x0时,x值越大,M值越小;使得M大于2的x值不存在; 使得M=1的x值是或其中正确的是【 】ABCD【答案】D。【考点】二次函数的图象和性质。【分析】当x0时,利用函数图象可以得出y2y1。此判断错误。抛物线y1=2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M。当x0时,根据函数图象可以得出x值越大,M值越大。此判断错误。抛物线y1=2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=
5、2x2+2,最大值为2,故M大于2的x值不存在;此判断正确。 使得M=1时,若y1=2x2+2=1,解得:x1=,x2=;若y2=2x+2=1,解得:x=。由图象可得出:当x=0,此时对应y1=M。抛物线y1=2x2+2与x轴交点坐标为:(1,0),(1,0),当1x0,此时对应y2=M, M=1时,x=或x=。此判断正确。因此正确的有:。故选D。4. (2012江苏苏州3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上若正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3,则点A3到
6、x轴的距离是【 】A. B. C. D. 【答案】D。【考点】正方形的性质,平行的性质,三角形内角和定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。【分析】过小正方形的一个顶点W作FQx轴于点Q,过点A3FFQ于点F,正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3,B3C3 E4=60,D1C1E1=30,E2B2C2=30。D1E1=D1C1=。D1E1=B2E2=。解得:B2C2=。B3E4=。,解得:B3C3=。WC3=。根据题意得出:WC3 Q=30,C3 WQ=60,A3 WF=30,WQ=,FW=WA3cos30=。点A3到x轴的距离为:FW
7、+WQ=。故选D。5. (2012江苏徐州3分)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC。图中相似三角形共有【 】A1对 B2对 C3对 D4对【答案】C。【考点】正方形的性质,勾股定理,相似三角形的判定。【分析】根据正方形的性质,求出各边长,应用相似三角形的判定定理进行判定: 同已知,设CF=a,则CE=DE=2a,AB=BC=CD=DA=4a,BF=3a。 根据勾股定理,得EF=,AE=,AF=5a。 。CEFDEA,CEFEAF,DEAEAF。共有3对相似三角形。故选C。6. (2012福建三明4分)如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以
8、P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有【 】A 2个 B 3个 C4个 D5个【答案】C。【考点】等腰三角形的判定。【分析】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论。 以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个。故选C。7. (2012湖北天门、仙桃、潜江、江汉油田3分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(1,0),(3,0)对于下列命题:b2a=0;abc0;a2b+4c0;8a+c0其中正确的有【 】A3个 B2个 C1个 D0个【答案】A。【考点】二次函数图象与系数的关系
9、。【分析】根据图象可得:a0,c0,对称轴:。它与x轴的两个交点分别为(1,0),(3,0),对称轴是x=1,。b+2a=0。故命题错误。a0,b0。 又c0,abc0。故命题正确。b+2a=0,a2b+4c=a+2b4b+4c=4b+4c。ab+c=0,4a4b+4c=0。4b+4c=4a。a0,a2b+4c=4b+4c=4a0。故命题正确。根据图示知,当x=4时,y0,16a+4b+c0。由知,b=2a,8a+c0。故命题正确。正确的命题为:三个。故选A。8. (2012湖北孝感3分)如图,在菱形ABCD中,A60,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG给出以下
10、结论,其中正确的有【 】BGD120;BGDGCG;BDFCGB;A1个 B2个 C3个 D4个【答案】C。【考点】菱形的性质,等边三角形的判定和性质,多边形内角和定理,全等三角形的判定和性质,含30度角直角三角形的性质 三角形三边关系,锐角三角函数定义,特殊角的三角函数值。【分析】在菱形ABCD中,A60,BCD60,ADC120,AB=AD。 ABD是等边三角形。 又E是AB的中点,ADEBDE30。CDG90。同理,CBG90。 在四边形BCDG中,CDGCBGBCDBGD=3600,BGD120。故结论正确。 由HL可得BCGDCG,BCGDCG30。BG=DG=CG。 BGDGCG。
11、故结论正确。 在BDG中,BGDGBD,即CGBD,BDFCGB不成立。故结论不正确。 DE=ADsinA=ABsin60=AB,。故结论正确。综上所述,正确的结论有三个。故选C。9. (2012湖南岳阳3分)如图,AB为半圆O的直径,AD、BC分别切O于A、B两点,CD切O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:OD2=DECD;AD+BC=CD;OD=OC;S梯形ABCD=CDOA;DOC=90,其中正确的是【 】A B C D【答案】A。【考点】切线的性质,切线长定理,相似三角形的判定与性质。1052629【分析】如图,连接OE,AD与圆O相切,DC
12、与圆O相切,BC与圆O相切,DAO=DEO=OBC=90,DA=DE,CE=CB,ADBC。CD=DE+EC=AD+BC。结论正确。在RtADO和RtEDO中,OD=OD,DA=DE,RtADORtEDO(HL)AOD=EOD。同理RtCEORtCBO,EOC=BOC。又AOD+DOE+EOC+COB=180,2(DOE+EOC)=180,即DOC=90。结论正确。DOC=DEO=90。又EDO=ODC,EDOODC。,即OD2=DCDE。结论正确。而,结论错误。由OD不一定等于OC,结论错误。正确的选项有。故选A。10. (2012湖南衡阳3分)如图为二次函数y=ax2+bx+c(a0)的图
13、象,则下列说法:a0 2a+b=0 a+b+c0 当1x3时,y0其中正确的个数为【 】A1 B2 C3 D4【答案】C。【考点】二次函数图象与系数的关系。【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c0,然后根据对称轴推出2a+b与0的关系,根据图象判断1x3时,y的符号:图象开口向下,a0。说法错误。对称轴为x=,即2a+b=0。说法正确。当x=1时,y0,则a+b+c0。说法正确。由图可知,当1x3时,y0。说法正确。说法正确的有3个。故选C。11. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行
14、,就称直线与抛物线相切,这条直线是抛物线的切线有下列命题:直线y=0是抛物线y=x2的切线直线x=2与抛物线y=x2 相切于点(2,1)直线y=x+b与抛物线y=x2相切,则相切于点(2,1)若直线y=kx2与抛物线y=x2 相切,则实数k=其中正确的命题是【 】ABCD【答案】B。【考点】新定义,二次函数的性质,一元二次方程根的判别式。【分析】直线y=0是x轴,抛物线y=x2的顶点在x轴上,直线y=0是抛物线y=x2的切线。故命题正确。 抛物线y=x2的顶点在x轴上,开口向上,直线x=2与对称轴平行,直线x=2与抛物线y=x2 相交。故命题错误。直线y=x+b与抛物线y=x2相切,由x2=4
15、xb得x24xb=0,=16+4b=0,解得b=4,把b=4代入x24xb=0得x=2。把x=2代入抛物线解析式得y=1,直线y=x+b与抛物线y=x2相切,则相切于点(2,1),故命题正确。直线y=kx2与抛物线y=x2 相切,由x2=kx2得x2kx+2=0。=k22=0,解得k=,故命题错误。正确的命题是。故选B。12. (2012四川达州3分)如图,在梯形ABCD中,ADBC,E、F分别是AB、CD的中点,则下列结论:EFAD; SABO=SDCO;OGH是等腰三角形;BG=DG;EG=HF。其中正确的个数是【 】A、1个 B、2个 C、3个 D、4个【答案】D。【考点】梯形中位线定理
16、,等腰三角形的判定,三角形中位线定理。【分析】在梯形ABCD中,ADBC,E、F分别是AB、CD的中点,EFADBC,正确。在梯形ABCD中,ABC和DBC是同底等高的三角形,SABC=SDBC。SAB CSOBC =SDBCSOBC,即SABO=SDCO。正确。EFBC,OGH=OBC,OHG=OCB。已知四边形ABCD是梯形,不一定是等腰梯形,即OBC和OCB不一定相等,即OGH和OHG不一定相等,GOH和OGH或OHG也不能证出相等。OGH是等腰三角形不对,错误。EFBC,AE=BE(E为AB中点),BG=DG,正确。EFBC,AE=BE(E为AB中点),AH=CH。E、F分别为AB、C
17、D的中点,EH=BC,FG=BC。EH=FG。EG=FH,正确。正确的个数是4个。故选D。13. (2012四川巴中3分)如图,已知AD是ABC的边BC上的高,下列能使ABDACD的条件是【 】A. AB=AC B. BAC=90 C. BD=AC D. B=45【答案】A。【考点】全等三角形的判定。【分析】添加AB=AC,符合判定定理HL。而添加BAC=90,或BD=AC,或B=45,不能使ABDACD。故选A。14. (2012四川泸州2分)如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EFAE交DC于点F,连接AF。设,下列结论: (1)ABEECF,(2)AE平分BAF,(3
18、)当k=1时,ABEADF,其中结论正确的是【 】A、(1)(2)(3)B、(1)(3)C、(1) (2)D、(2)(3)【答案】C。【考点】矩形的性质,相似三角形的判定和性质,锐角三角函数定义,正方形的判定和性质。【分析】(1)四边形ABCD是矩形,B=C=90。BAE+AEB=90。EFAE,AEB+FEC=90。BAE=FEC。ABEECF。故(1)正确。(2)ABEECF,.E是BC的中点,BE=EC。在RtABE中,tanBAE= ,在RtAEF中,tanEAF= ,tanBAE=tanEAF。BAE=EAF。AE平分BAF。故(2)正确。(3)当k=1时,即,AB=AD。四边形AB
19、CD是正方形。B=D=90,AB=BC=CD=AD。ABEECF,。CF=CD。DF=CD。AB:AD=1,BE:DF=2:3.ABE与ADF不相似。故(3)错误。故选C。15. (2012辽宁丹东3分)如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:DOC=90 , OC=OE, tanOCD = , 中,正确的有【 】A.1个 B.2个 C.3个 D.4个【答案】C。【考点】正方形的性质,全等三角形的判定和性质,三角形内角和定理,反证法,线段垂直平分线的性质,三角形边角关系,锐角三角函数定义。【分析】正方形ABCD的边长为4
20、,BC=CD=4,B=DCF=90。AE=BF=1,BE=CF=41=3。在EBC和FCD中,BC=CD,B=DCF,BE=CF,EBCFCD(SAS)。CFD=BEC。BCE+BEC=BCE+CFD=90。DOC=90。故正确。如图,若OC=OE,DFEC,CD=DE。CD=ADDE(矛盾),故错误。OCD+CDF=90,CDF+DFC=90,OCD=DFC。tanOCD=tanDFC=。故正确。EBCFCD,SEBC=SFCD。SEBCSFOC=SFCDS,即SODC=S四边形BEOF。故正确。故选C。16. (2012辽宁沈阳3分)如图,正方形ABCD中,对角线AC,BD相交于点O,则图
21、中的等腰直角三角形有【 】A4个 B6个 C8个 D10个【答案】C。【考点】等腰直角三角形的判定,正方形的性质。【分析】正方形ABCD中,对角线AC、BD相交于点O,AB=BC=CD=AD,OA=OB=OC=OD,四个角都是直角,ACBD。图中的等腰直角三角形有AOB、AOD、COD、BOC、ABC、BCD、ACD、BDA八个。故选C。17. (2012山东东营3分)如图,一次函数的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE有下列四个结论:CEF与DEF的面积相等;AOBFOE;DCECDF;AC=BD
22、其中正确的结论是【 】A B C D 【答案】C。【考点】反比例函数和一次函数交点问题,曲线上点的坐标与方程的关系,等腰直角三角形的判定和性质,平行的判定和性质,相似三角形的判定,勾股定理,全等三角形的判定,平行四边形的判定和性质。【分析】一次函数的图象与x轴,y轴交于A,B两点,A(0,3),B(3,0)。 联立和可得C(4,1),D(1,4),E(0,1),F(1,0)。 OA=OB=3,OE=OF=1,即ABO和EFO都是等腰直角三角形。BAO=EFO=450。ABEF。 CEF与DEF是同底等高的三角形。CEF与DEF的面积相等。所以结论正确。 又由ABEF,得AOBFOE。所以结论正
23、确。 由各点坐标,得CE=4,DF=4,CF=,DE=,CE=DF,CF=DE。 又CD=DC,DCECDF(SSS)。所以结论正确。 由AF=CE=4和AFCE得,四边形ACEF是平行四边形。AC=FE。 由BE=DF=4和BEDF得,四边形DBEF是平行四边形。BD=EF。 AC=BD。所以结论正确。因此,正确的结论是。故选C。18. (2012山东莱芜3分)如图,在梯形ABCD中,ADBC,BCD90,BC2AD,F、E分别是BA、BC的中点,则下列结论不正确的是【 】AABC是等腰三角形 B四边形EFAM是菱形CSBEFSACD DDE平分CDF【答案】D。【考点】梯形的性质,平行四边
24、形的判定和性质,等腰三角形的判定,菱形的判定,三角形中位线定理。【分析】如图,连接AE,由ADBC,BCD90,BC2AD,可得四边形AECD是矩形,AC=DE。 F、E分别是BA、BC的中点,ADBE。四边形ABED是平行四边形。AB=DE。 AB= AC,即ABC是等腰三角形。故结论A正确。 F、E分别是BA、BC的中点,EFAC,EF=AC=AB=AF。 四边形ABED是平行四边形,AFME。四边形EFAM是菱形。故结论B正确。 BEF和ACD的底BE=AD,BEF的BE边上高=ACD的AD边上高的一半, SBEFSACD。故结论C正确。 以例说明DE平分CDF不正确。如图,若B=450
25、, 则易得ADE=CDE=450。而FDEADE=CDE。DE平分CDF不正确(只有在B=600时才成立)。故结论D不正确。故选D。19. (2012广西贵港3分)如图,在菱形ABCD中,ABBD,点E、F分别在BC、CD上,且BECF,连接BF、DE交于点M,延长DE到H使DEBM,连接AM、AH。则以下四个结论:BDFDCE;BMD120;AMH是等边三角形;S四边形ABMDAM2。其中正确结论的个数是【】A1 B2C3 D4【答案】C。【考点】菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,平行的性质。【分析】在菱形ABCD中,ABBD,ABBDAD。ABD是等边三角形。根据
26、菱形的性质可得BDFC60。BECF,BCBECDCF,即CEDF。在BDF和DCE中,CEDF;BDFC60;BDCD,BDFDCE(SAS)。故结论正确。DBFEDC。DMFDBFBDEEDCBDEBDC60,BMD180DMF18060120,故结论正确。DEBEDCCEDC60,ABMABDDBFDBF60,DEBABM。又ADBC,ADHDEB,ADHABM。在ABM和ADH中,ABAD;ADHABM;DHBM,ABMADH(SAS)。AHAM,BAMDAH。MAHMADDAHMADBAMBAD60。AMH是等边三角形。故结论正确。ABMADH,AMH的面积等于四边形ABMD的面积。
27、又AMH的面积AMAMAM2,S四边形ABMDAM2,S四边形ABCDS四边形ABMD。故结论小题错误。综上所述,正确的是共3个。故选C。20. (2012河北省3分)如图,抛物线y1=a(x2)23与y2=(x3)21交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C则以下结论:无论x取何值,y2的值总是正数;a=1;当x=0时,y2y1=4;2AB=3AC;其中正确结论是【 】A B C D【答案】D。【考点】二次函数的性质,曲线上点的坐标与方程的关系,解一元二次方程。【分析】(x3)20,y2=(x3)210,即无论x取何值,y2的值总是正数。故结论正确。 两抛物线交于
28、点A(1,3),3=a(12)23,解得a=1。故结论错误。【至此即可判断D正确】当x=0时,y2y1=(03)21(02)23= 。故结论错误。解3=(x2)23得x=1或x=5,B(1,5)。AB=6,2AB=12。解3=(x3)21得x=1或x=5,B(1, 5)。BC=4,3BC=12。2AB=3AC。故结论正确。因此,正确结论是。故选D。21. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西3分)RtABC中,AB=AC,点D为BC中点MDN=900,MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点下列结论(BE+CF)=BC,ADEF,ADEF,AD与EF可能互相平分,
29、其中正确结论的个数是【 】A1个 B2个 C3个 D4个【答案】C。【考点】等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理,完全平方式的非负数性质,矩形的判定和性质,三角形边角关系,三角形中位线定理。【分析】RtABC中,AB=AC,点D为BC中点MDN=900,AD =DC,EAD=C=450,EDA=MDNADN =900AND=FDC。EDAFDC(ASA)。AE=CF。BE+CF= BE+ AE=AB。在RtABC中,根据勾股定理,得AB=BC。(BE+CF)= BC。结论正确。设AB=AC=a,AE=b,则AF=BE= ab。结论正确。如图,过点E作EIAD于点I,过点
30、F作FGAD于点G,过点F作FHBC于点H,ADEF相交于点O。四边形GDHF是矩形,AEI和AGF是等腰直角三角形,EOEI(EFAD时取等于)=FH=GD,OFGH(EFAD时取等于)=AG。EF=EOOFGDAG=AD。结论错误。EDAFDC,。结论错误。又当EF是RtABC中位线时,根据三角形中位线定理知AD与EF互相平分。结论正确。综上所述,结论正确。故选C。22. (2012黑龙江龙东地区3分)如图,已知直角梯形ABCD中,ADBC,ABC=90,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:
31、ABN=CBN; DEBN; CDE是等腰三角形; ; ,正确的个数有【 】 A. 5个 B. 4个 C. 3个 D. 2个 【答案】B。【考点】直角梯形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,平行的判定,平行四边形的判定和性质,三角形中位线定理,相似全等三角形的判定和性质,矩形的判定和性质,勾股定理。【分析】如图,连接DF,AC,EF,E、F分别为AB、BC的中点,且AB=BC,AE=EB=BF=FC。在ABF和CBE中,AB=CB,ABF=CBE, BF=BE,ABFCBE(SAS)。BAF=BCE,AF=CE。在AME和CMF中,BAF=BCE,AME=CMF ,AE
32、=CF,AMECMF(AAS)。EM=FM。在BEM和BFM中,BE=BF,BM=BM, EM=FM,BEMBFM(SSS)。ABN=CBN。结论正确。AE=AD,EAD=90,AED为等腰直角三角形。AED=45。ABC=90,ABN=CBN=45。AED=ABN=45。EDBN。结论正确。AB=BC=2AD,且BC=2FC,AD=FC。又ADFC,四边形AFCD为平行四边形。AF=DC。又AF=CE,DC=EC。则CED为等腰三角形。结论正确。EF为ABC的中位线,EFAC,且EF=AC。MEF=MCA,EFM=MAC。EFMCAM。EM:MC=EF:AC=1:2。设EM=x,则有MC=2
33、x,EC=EM+MC=3x,设EB=y,则有BC=2y,在RtEBC中,根据勾股定理得:,3x=y,即x:y=:3。EM:BE=:3。结论正确。E为AB的中点,EPBM,P为AM的中点。又,。四边形ABFD为矩形,。又,S。结论错误。因此正确的个数有4个。故选B。23. (2012黑龙江牡丹江3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O则下列结论ABFCAE,AHC=1200,AH+CH=DH,AD 2=ODDH中,正确的是【 】A. B. C. D. 【答案】D。【考点】菱形的性质,等边三角形的判定和性质
34、,全等、相似三角形的判定和性质,三角形内角和定理,四点共圆的判定,圆周角定理。【分析】菱形ABCD中,AB=AC,ABC是等边三角形。B=EAC=600。 又AE=BF,ABFCAE(SAS)。结论正确。 ABFCAE,BAF=ACE。AHC=1800(ACECAF)=1800(BAFCAF)=1800BAC=1800600=1200。结论正确。如图,在HD上截取HG=AH。菱形ABCD中,AB=AC,ADC是等边三角形。ACD=ADC=CAD=600。又AHC=1200,AHCADC =1200600=1800。A,H,C,D四点共圆。AHD=ACD =600。AHG是等边三角形。AH=AG
35、,GAH=600。CAH=600CAG=DAG。又AC=AD,CAHDAG(SAS)。CH=DG。AH+CH= HG+ DG =DH。结论正确。AHD =OAD=600,ADH=ODA,ADHODA。AD 2=ODDH。结论正确。综上所述,正确的是。故选D。二、填空题1. (2012浙江、舟山嘉兴5分)如图,在RtABC中,ABC=90,BA=BC点D是AB的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF给出以下四个结论:;点F是GE的中点;AF=AB;SABC=5SBDF,其中正确的结论序号是 【答案】。【考点】相似三角形的判定和性
36、质,勾股定理,等腰直角三角形的性质。【分析】在RtABC中,ABC=90,ABBC。又AGAB,AGBC。AFGCFB。BA=BC,。故正确。ABC=90,BGCD,DBE+BDE=BDE+BCD=90。DBE=BCD。AB=CB,点D是AB的中点,BD=AB=CB。又BG丄CD,DBE=BCD。在RtABG中,。,FG=FB。故错误。AFGCFB,AF:CF=AG:BC=1:2。AF=AC。AC=AB,AF=AB。故正确。设BD= a,则AB=BC=2 a,BDF中BD边上的高=。SABC=, SBDFSABC=6SBDF,故错误。因此,正确的结论为。2. (2012浙江丽水、金华4分)如图
37、,在直角梯形ABCD中,A90,B120,AD,AB6在底边AB上取点E,在射线DC上取点F,使得DEF120(1)当点E是AB的中点时,线段DF的长度是 ;(2)若射线EF经过点C,则AE的长是 【答案】6;2或5。【考点】直角梯形的性质,勾股定理,解直角三角形。【分析】(1)如图1,过E点作EGDF,EGAD。E是AB的中点,AB6,DGAE3。DEG60(由三角函数定义可得)。DEF120,FEG60。tan60,解得,GF3。EGDF,DEGFEG,EG是DF的中垂线。DF2 GF6。1世纪教育网(2)如图2,过点B作BHDC,延长AB至点M,过点C作CFAB于F,则BHAD。ABC1
38、20,ABCD,BCH60。CH,BC。设AEx,则BE6x,在RtADE中,DE,在RtEFM中,EF,ABCD,EFDBEC。DEFB120,EDFBCE。,即,解得x2或5。3. (2012浙江衢州4分)如图,已知函数y=2x和函数的图象交于A、B两点,过点A作AEx轴于点E,若AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是 【答案】(0,4),(4,4),(4,4)。【考点】反比例函数综合题,平行四边形的性质。【分析】先求出B、O、E的坐标,再根据平行四边形的性质画出图形,即可求出P点的坐标:如图,AOE的面积为4,函数的图象过一、三象限,k=8。反比例函数为函数y=2x和函数的图象交于A、B两点,A、B两点的坐标是:(2,4)(2,4),以点B、O、E、P为顶点的平行四边形共有3个,满足条件的P点有3个,分别为:P1(0,4),P2(4,4),P3(4,4)。4. (2012浙江义乌4分)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边APQ,连接PB、BA若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是