资源描述
本科毕业设计
题目:
16/3t桥式起重机结构及运行机构设计
学 院:
机械自动化
专 业:
机械工程及其自动化
学 号:
200603130212
学生姓名:
陈旭
指导教师:
龙靖宇
日 期:
2010.6
VII
武汉科技大学本科毕业设计
摘 要
本次毕业设计是针对毕业实习中桥式起重机所做的具体到吨位级别的设计。随着我国制造业的发展,桥式起重机越来越多的应用到工业生产当中。在工厂中搬运重物,机床上下件,装运工作吊装零部件,流水线上的定点工作等都要用到起重机。起重机中种数量最多,在大小工厂之中均有应用的就是小吨位的起重机,小吨位的桥式起重机广泛的用于轻量工件的吊运,在我国机械工业中占有十分重要的地位。但是,我国现在应用的各大起重机还是仿造国外落后技术制造出来的,而且已经在工厂内应用了多年,有些甚至还是七八十年代的产品,无论在质量上还是在功能上都满足不了日益增长的工业需求。如何设计使其成本最低化,布置合理化,功能现代化是我们研究的课题。本次设计就是对小吨位的桥式起重机进行设计,主要设计内容是16/3t桥式起重机的结构及运行机构,其中包括桥架结构的布置计算及校核,主梁结构的计算及校核,端梁结构的计算及校核,主端梁连接以及大车运行机构零部件的选择及校核。
关键词: 起重机 ; 大车运行机构 ; 桥架 ; 主端梁 ; 小吨位
ABSTRACT
The graduation project is a bridge crane for the graduation field work done by the tonnage level specific to the design. As China's manufacturing industry, more and more applications crane to which industrial production. Carry a heavy load in the factory, machine parts up and down, the work of lifting parts of shipment, assembly line work should be fixed on the crane is used. The largest number of species of cranes, both in the size of the factory into the application is small tonnage cranes, bridge cranes small tonnage of lightweight parts for a wide range of lifting, in China's machinery industry plays a very important position. However, our current application, or copy large crane behind the technology produced abroad, and has been applied in the factory for many years, and some 70 to 80 years of products, both in quality or functionality are not growing to meet the industrial demand. How to design it the lowest cost, rationalize the layout, function modernization is the subject of our study. This design is for small tonnage bridge crane design, the main design elements are 16/3t crane structure and operation of institutions, including the bridge structure, calculation and checking the layout, the main beam structure calculation and checking , end beams calculation and checking, the main end beam connect and run the cart and checking body parts of choice.
Keywords: Crane; The moving mainframe; Bridge; Main beam and end beam; Small tonnage
目 录
1 绪论···································································1
1.1 桥式起重机的介绍··················································1
1.2 桥式起重机设计的总体方案··········································1
1.2.1主梁和桥架的设计··············································1
1.2.2端梁的设计····················································1
2 大车运行机构的设计······················································2
2.1 设计的基本原则和要求···············································2
2.1.1机构传动方案··················································2
2.1.2大车运行机构具体布置的主要问题································2
2.2 大车运行机构的计算················································3
2.2.1确定机构传动方案··············································3
2.2.2大车车轮与轨道的选择及其强度校核······························3
2.2.3运行阻力运算··················································5
2.2.4选择电动机····················································6
2.2.5验算电动机的发热条件··········································6
2.2.6减速器的选择··················································6
2.2.7验算运行速度和实际所需功率 ···································7
2.2.8验算起动时间··················································7
2.2.9起动工况下校核减速器功率······································8
2.2.10验算启动不打滑条件···········································8
2.2.11选择制动器··················································10
2.2.12选择联轴器··················································11
2.2.13浮动轴的验算················································11
2.2.14缓冲器的选择················································12
3 桥架结构的计算························································14
3.1 主要尺寸的确定···················································14
3.1.1大车轮距·····················································14
3.1.2主梁高度·····················································14
3.1.3端梁高度·····················································14
3.1.4桥架端部梯形高度·············································14
3.1.5主梁腹板高度·················································15
3.1.6确定主梁截面尺寸·············································15
3.1.7加劲板的布置尺寸·············································15
3.2 主梁的计算·······················································16
3.2.1计算载荷确定·················································16
3.2.2主梁垂直最大弯矩·············································16
3.2.3主梁水平最大弯矩·············································17
3.2.4主梁的强度验算···············································17
3.2.5主梁的垂直刚度验算···········································19
3.2.6主梁的水平刚度验算···········································19
3.3 端梁的计算·······················································20
3.3.1计算载荷的确定···············································20
3.3.2端梁垂直最大弯矩·············································20
3.3.3梁的水平弯矩·················································20
3.3.4端梁截面尺寸的确定···········································21
3.3.5端梁的强度验算···············································22
3.4 主要焊缝的计算···················································23
3.4.1端梁端部上翼缘焊缝···········································23
3.4.2端梁端部下翼缘焊缝···········································24
3.4.3主梁与端梁的连接焊缝·········································24
3.4.4主梁上盖板焊缝···············································24
结束语 ·······························································25
参考文献 ······························································26致谢··································································27
附录一:图纸目录及总量
附录二:部分图纸(图幅小于A3)
武汉科技大学本科毕业设计
1 绪论
1.1 桥式起重机的介绍
桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,起重小车沿铺设在桥架上的轨道横向运行,构成一矩形的工作范围,就可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。桥式起重机广泛地应用在室内外仓库、厂房、码头和露天贮料场等处。
1.2 桥式起重机设计的总体方案
起重机课程设计的主要参数:
表1.1 起重机课程设计参数
工作级别
A5
跨度L(m)
25.5
主起升
副起升
小车运行
大车运行
起升重量Q(t)
16
3
起升高H(m)
12
14
工作V(m/min)
9.5
18.5
44.2
74
工作级别
A5
A5
A5
A5
JC%
75%
75%
75%
75%
1.2.1 主梁和桥架的设计
主梁跨度25.5m ,主要构件是上盖板、下盖板和两块垂直腹板,主梁和端梁采用搭接形式,走台的宽度取决于端梁的长度和大车运行机构的平面尺寸,司机室采用闭式一侧安装,腹板上加横向加劲板和纵向加劲条或者角钢来固定,纵向加劲条的焊接采用自动焊,主梁翼缘板和腹板的焊接采用贴角焊缝,腹板的下边和下盖板硬做成抛物线形。
1.2.2 端梁的设计
端梁采用箱型的实体板梁式结构,是由车轮组合端梁架组成,端梁的中间截面也是由上盖板,下盖板和两块腹板组成;通常把端梁制成制成三个分段,端梁是由两段通过连接板和角钢用高强螺栓连接而成。端梁的主要尺寸是依据主梁的跨度,大车的轮距和小车的轨距来确定的;大车的运行采用分别驱动的方案。在装配起重机的时候,先将端梁的一段与其中的一根主梁连接在一起,然后再将端梁的两段连接起来。
下面对主梁,端梁,桥架进行详细计算和校核。
2 大车运行机构的设计
2.1 设计的基本原则和要求
大车运行机构的设计通常和桥架的设计一起考虑,两者的设计工作要交叉进行,一般的设计步骤:
1. 确定桥架结构的形式和大车运行机构的传方式
2. 布置桥架的结构尺寸
3. 安排大车运行机构的具体位置和尺寸
4. 综合考虑二者的关系和完成部分的设计
对大车运行机构设计的基本要求是:
1. 机构要紧凑,重量要轻
2. 和桥架配合要合适,这样桥架设计容易,机构好布置
3. 尽量减轻主梁的扭转载荷,不影响桥架刚度
4. 维修检修方便,机构布置合理
2.1.1 机构传动方案
大车机构传动方案,基本分为两类:分别传动和集中传动,桥式起重机常用的跨度(10.5-32M)范围均可用分别传动的方案,本设计跨度为25.5m采用分别传动的方案。
2.1.2 大车运行机构具体布置的主要问题
1. 联轴器的选择
2. 轴承位置的安排
3. 轴长度的确定
这三着是互相联系的。
在具体布置大车运行机构的零部件时应该注意以几点:
1. 因为大车运行机构要安装在起重机桥架上,桥架的运行速度很高,而且受载之后向下挠曲,机构零部件在桥架上的安装可能不十分准确,所以如果单从保持机构的运动性能和补偿安装的不准确性着眼,凡是靠近电动机、减速器和车轮的轴,最好都用浮动轴。
2. 为了减少主梁的扭转载荷,应该使机构零件尽量靠近主梁而远离走台栏杆;尽量靠近端梁,使端梁能直接支撑一部分零部件的重量。
3. 对于分别传动的大车运行机构应该参考现有的资料,在浮动轴有足够的长度的条件下,使安装运行机构的平台减小,占用桥架的一个节间到两个节间的长度,总之考虑到桥架的设计和制造方便。
4. 制动器要安装在靠近电动机,使浮动轴可以在运行机构制动时发挥吸收冲击动能的作用。
2.2 大车运行机构的计算
参数:起重机估计总重G=30.5t,桥架跨度L=25.5m,起重量Q=16t,大车运行速度Vdc=74m/min,工作级别为A5级,机构运行持续率为JC%=25%,小车的重量为Gxc=6.611t,桥架为箱形结构。
2.2.1 确定机构传动方案
本起重机设计的传动方案如图所示:
图2.1 大车运行机构
1—电动机 2—制动器 3—高速浮动轴 4—联轴器 5—减速器 6—联轴器 7低速浮动轴 8—联轴器 9—车轮
2.2.2 大车车轮与轨道的选择及其强度校核
如图所示的重量分布,计算大车车轮的最大轮压和最小轮压。
图2.2 大车轮压受力图
满载时,最大轮压:
Pmax= (2.1)
=
=165.932KN
空载时,最小轮压:
P‘min= (2.2)
=
=61.0187KN
式中的e为主钩中心线离端梁的中心线的最小距离e=1.544m
车轮踏面疲劳计算载荷
P==(2*165.932+61.019)/3=130.961KN (2.3)
车轮材料,采用ZG340-640(调制),σ=700MP,σ=380MP,由附表18选择车轮直径D=500mm,
由 [1]表5-1 查得轨道型号为QU70(起重机专用轨道)
按车轮与轨道为点接触和线接触两种情况来验算车轮的接触强度
1)点接触局部挤压强度验算:
P=kRcc/m=281257N (2.4)
k-许用点应力常数(N/mm),由【1】表5-2,取k=0.181
R-曲率半径,由车轮和轨道两者曲率半径中取最大值。取QU70的曲率半径为400mm
M-由轨顶和车轮的曲率半径之比(r/R)所确定的系数,由【1】表5-5查得,m=0.461
c-转数系数,由【1】表5-3,车轮转速n=/πD=74/π/0.5=47.134r/min,c=0.9515.
c-工作级别系数,由表5-4,M级别,c=1
P>P 故验算通过
2)线接触局部挤压强度验算
P=kDlcc=219796.5KN (2.5)
式中,
k -许用点应力常数(N/mm),由【1】表5-2,取k=6.6
l-车轮与轨道的有效接触长度,QU70中,l=70mm
c-转数系数,由【1】表5-3,车轮转速n=/πD=74/π/0.5=47.134r/min,c=0.9515.
c-工作级别系数,由表5-4,M级别,c=1
P>P 故验算通过
2.2.3 运行阻力运算
摩擦总阻力距
Mm=β(Q+G)(K+μ*d/2)
由【3】 Dc=500mm车轮的轴承型号为:7520, 轴承内径和外径的平均值为:(100+180)/2=140mm
由【2】中表9-2到表9-4查得:滚动摩擦系数K=0.0006m,轴承摩擦系数μ=0.02,附加阻力系数β=1.2,代入上式中:
当满载时的运行阻力矩:
Mm(Q=Q)= Mm(Q=Q)=b(Q+G)( k +m) =1.2(160000+305000)×(0.0006+0.02×0.14/2)
=1116N·m (2.6)
运行摩擦阻力:
Pm(Q=Q)===4464N (2.7)
空载时:
Mm(Q=0)=β×G×(K+μd/2) (2.8)
=1.2×305000×(0.0006+0.02×0.14/2)
=732N
P m(Q=0)= Mm(Q=0)/(Dc/2) (2.9)
=732×2/0.5
=2928N
2.2.4 选择电动机
电动机静功率:
Nj=Pj·Vdc/(1000·m· ) (2.10)
=4464×74/1000/60/0.95/2=2.90KW
式中
Pj=Pm(Q=Q)—满载运行时的静阻力(P m(Q=0)=4464N)
m=2驱动电动机的台数
初选电动机功率:
N=Kd*Nj=1.19*2.90=3.45KW
式中Kd-电动机功率增大系数,由【2】表7-6查得Kd=1.19
查【1】表31-27选用电动机YZR160M1;Ne=5.8KW,n1=927r/min,(GD2)=0.547kgm2,电动机的重量Gd=154kg
2.2.5 验算电动机的发热条件
等效功率:
Nx=K25·r·Nj )
=0.75×1.3×2.90
=2.82KW (2.11)
式中
K25—工作类型系数,由[1]查得当JC%=25时,K25=0.75
r—由[1]按照起重机工作场所得tq/tg=0.25,r=1.3
由此可知:Nx<Ne,故初选电动机发热条件通过。
选择电动机:YZR160M1
2.2.6 减速器的选择
车轮的转数:
nc=Vdc/(π·Dc)=74/3.14/0.5=47.13r/min (2.12)
机构传动比:
i。=n1/nc=927/47.13=19.67 (2.13)
查[【1】表35,选用两台ZQ-350-V-1Z减速器i‘=20.49;[N]=9.2KW,当输入转速为1000r/min时,可见Nj<[N]。
2.2.7 验算运行速度和实际所需功率
实际运行的速度:
V=Vdc· i。/ i。‘=74×19.67/20..49=71.04m/min (2.14)
误差:
ε=(Vdc-V)/ Vdc=(74-871.04)/74×100%=4%<15%合适 (2.15)
实际所需的电动机功率:
N=Nj·V/ Vdc=2.590×71.04/74=22.784KW (2.16)
由于N‘j<Ne,故所选的电动机和减速器都合适
2.2.8 验算起动时间
起动时间:
t= (2.17)
式中n1=927r/min
m=2(驱动电动机台数)
Mq=1.5×9550×N/n1
=1.5×9550×5.8/927=829.6N·m
满载时运行静阻力矩:
Mj(Q=Q)===57.33N·m (2.18)
空载运行时静阻力矩:
Mj(Q=0)= (2.19)
==37.60N·m
初步估算高速轴上联轴器的飞轮矩:
(GD2)ZL+(GD2)L=0.43N·m (2.20)
机构总飞轮矩:
(GD2)1=(GD2)ZL+(GD2)L+(GD2)d
=0.43+0.47=0.9 N·m (2.21)
满载起动时间:
t= (2.22)
=
=6.22s
空载启动时间:
t= (2.23)
=
=3.62s
起动时间在允许范围(8`10s)内。
2.2.9 起动工况下校核减速器功率
起动工况下减速器传递的功率:
N= (2.24)
式中Pd=Pj+Pg=Pj+ (2.25)
=4464+
=13315.45N
m/--运行机构中,同一级传动减速器的个数,m/=2.
因此N= =8.30KW
所以减速器的[N]中级=9.2KW>N,故所选减速器功率合适。
2.2.10 验算启动不打滑条件
由于起重机室内使用,故坡度阻力及风阻力不考虑在内.以下按三种情况计算.
1.两台电动机空载时同时驱动:
n=>nz
式中p1==61019+165932=226951N——主动轮轮压
p2= p1=226915N——从动轮轮压
f=0.2——粘着系数(室内工作)
nz—防止打滑的安全系数.nz1.05~1.2
n = (2.26)
=3.84
n>nz,故两台电动机空载启动不会打滑
2.事故状态
当只有一个驱动装置工作,而无载小车位于工作着的驱动装置这一边时,则
n=nz
式中 (2.27)
p1==765932N——主动轮轮压
p2=2+=287990N——从动轮轮压
——一台电动机工作时空载启动时间
=
=9.41 s
n= =4.16s
n>nz,,故不打滑.
3.事故状态
当只有一个驱动装置工作,而无载小车远离工作着的驱动装置这一边时,则
式中
P1==61019N——主动轮轮压
P2=2=392883N——从动轮轮压
= 9.41S ——与第二种工况相同
n=
=2.42s
n>nz,故也不会打滑
2.2.11 选择制动器
由【2】中所述,取制动时间tz=6s
按空载计算动力矩,令Q=0,带入[1]的(7-16)得:
Mz=
式中 (2.28)
= (2.29)
=-21.2115N·m
Pp=0.002G=305000×0.002=610N ——坡度阻力
Pmin=G
==2440N
M=2——制动器台数.两套驱动装置工作
Mz= (2.30)
=28 N·m
现选用两台YWZ-200/23的制动器,查【1】附表15其制动力矩M=112 N·m,为避免打滑,使用时将其制动力矩调制28 N·m以下
2.2.12 选择联轴器
根据传动方案,每套机构的高速轴和低速轴都采用浮动轴.
1.机构高速轴上的计算扭矩:
==119.5×1.4=167.3 N·m (2.31)
式中MI—连轴器的等效力矩.
MI==2×59.75=119.5 N·m (2.32)
—等效系数 取=2查[2]表2-6(A5`A6级)
Mel=95550*=119.5 N·m
由【1】附表29查的:电动机YZR160M,轴端为圆锥形,d1=48mm,L=110mm;由附表34查得ZQ350减速器,高速轴端为d=40mm,l=60mm,故在靠电机端从由附表43选两个半齿轮联轴器S161(靠近电机端为圆锥形,浮动轴端d=35mm;[MI]=3150N·m,(GD2)ZL=0.314Kg·m,重量G=18.4Kg) ;在靠近减速器端,由附表43选用两个半齿轮联轴器S447,在靠近减速器端为圆锥形,浮动轴端直径为d=35mm;[MI]=7110 N·m, (GD2)L=0.107Kg·m, 重量G=9.46Kg.
高速轴上转动零件的飞轮矩之和为:
(GD2)ZL+(GD2)L=0.314+0.107=0.421 Kg·m
与原估算的基本相符,故不需要再算。
2.低速轴的计算扭矩:
(2.33)
=167.3×20.49×0.95=3256.58 N·m
由【1】附表34得,ZQ350减速器低速轴端为圆锥形,d=65mm,l=105mm
由【1】附表19查得,Dc=500mm,主动车轮伸出轴为圆锥形,d=75mm,l=105mm
故从【1】附表42中选用4个联轴节:
GICLZ 另两个GICLZ
2.2.13 浮动轴的验算
1).疲劳强度的计算
低速浮动轴的等效力矩:
MI=Ψ1▪Mel▪i
=1.4×59.75×20.49×0.95=1625.11N▪m (2.34)
式中Ψ1—等效系数,由[2]表2-6查得Ψ1=1.4
由上节已取得浮动轴端直径D=60mm,故其扭转应力为:
MPa (2.35)
由于浮动轴载荷变化为循环(因为浮动轴在运行过程中正反转矩相同),所以许用扭转应力为:
(2.36)
=49.1MPa
式中,材料用45号钢,取sb=600MPa; ss=300MPa,则t-1=0.22sb=0.22×600=132MPa2;ts=0.6ss=0.6×30000=180MPa
K=KxKm=1.6×1.2=1.92 (2.37)
考虑零件的几何形状表面状况的应力集中系数,由第二章第五节及[2]第四章查得:Kx=1.6,Km=1.2,nI=1.4—安全系数,由表2-18查得tn<[t-1k] 故疲劳强度验算通过。
2).静强度的计算
计算强度扭矩:
Mmax=Ψ2▪Mel▪i (2.38)
=2.5×59.75×20.49×0.95=2907 N▪m
式中Ψ2—动力系数,查[2]表2-5的Ψ2=2.5
扭转应力:
t==67MPa (2.39)
许用扭转剪应力:
MPa (2.40)
t<[t]II,故强度验算通过。
高速轴所受扭矩虽比低速轴小,但强度还是足够,故高速轴验算从略。
2.2.14 缓冲器的选择
1.碰撞时起重机的动能
W动= (2.41)
G—带载起重机的重量G=305000+160000×0.1=465000N
V0—碰撞时的瞬时速度,V0=(0.3~0.7)Vdx
g—重力加速度取10m/s2
则W动=
=8793.73 N m
2. 缓冲行程内由运行阻力和制动力消耗的功
W阻=(P摩+P制)S (2.42)
式中
P摩—运行阻力,其最小值为
Pmin=Gf0min=465000×0.008=3720N
f0min—最小摩擦阻力系数可取f0min=0.008
P制—制动器的制动力矩换算到车轮踏面上的力,亦可按最大制动减速度计算
P制==46500×0.55=25575N (2.43)
=0.55 m /s2
S—缓冲行程取S=140 mm
因此W阻=(3720+25575)×0.14=4101.3N m
3. 缓冲器的缓冲容量
一个缓冲器要吸收的能量也就是缓冲器应该具有的缓冲容量为:
展开阅读全文