收藏 分销(赏)

六年级数学上册各单元重要知识点汇总.docx

上传人:天**** 文档编号:4664208 上传时间:2024-10-08 格式:DOCX 页数:6 大小:66.99KB
下载 相关 举报
六年级数学上册各单元重要知识点汇总.docx_第1页
第1页 / 共6页
六年级数学上册各单元重要知识点汇总.docx_第2页
第2页 / 共6页
六年级数学上册各单元重要知识点汇总.docx_第3页
第3页 / 共6页
六年级数学上册各单元重要知识点汇总.docx_第4页
第4页 / 共6页
六年级数学上册各单元重要知识点汇总.docx_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、 2017六年级数学上册各单元重要知识点汇总第一单元 位置 用数对确定点的位置,如(3,5)表示:(第三列,第五行) 几 列 几 行 竖排叫列 横排叫行 一般(从左往右看) (从前往后看) 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 图形左、右平移: 行不变 图形上、下平移: 列不变 第二单元 分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 5表示求5个 的和是多少? 也表示 的5倍是多少? 5 表示求5的 是多少 2、分数乘分数是求一个数的几分之几是多少。 例如: 表示求 的 是多少? (二)

2、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算

3、顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a b = b a 乘法结合律: ( a b )c = a ( b c ) 乘法分配律: ( a + b )c = a c + b c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。 2、找单位“1”: 一般在分率句中分率的前面;或“占”、“是”、“比”的后面 3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数 。 4、写数量关系式技巧

4、: (1)“的” 相当于 “” “占”、“是”、“比”相当于“ = ” (2)分率前是“的”: 单位“1”的量分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量(1 分率)=分率对应量 三、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。

5、3、1的倒数是1; 0没有倒数。 因为11=1;0乘任何数都得0, (分母不能为0) 4、 对于任意数 ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ; 5、 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 第三单元 分数除法 一、分数除法 1、分数除法的意义: 乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数

6、小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。 4、“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 ) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”: 单位“1”的量分率=分率对应量 (2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程: 根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法): 对应量对应分率

7、= 单位“1”的量 3、求一个数是另一个数的几分之几:就 一个数另一个数 4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位“1”的量 或: 求多几分之几:大数小数 C 1 求少几分之几:1 - 小数大数 三、比和比的应用 (一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0. 例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示) 前项 比号 后项 比值 3、比可以表示两个相同

8、量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。 4、求比值的方法:用比的前项除以比的后项。 5、区分比和比值 比:表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。有比的前项和比的后项 比值:相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。 6、根据分数与除法的关系,两个数的比也可以写成分数形式。例如3:2也可以写成,仍读作“3:2”。 7、 比和除法、分数的联系: 比前 项比号“:”后 项比值除 法被除数除号“”除 数商分 数分 子分数线“”分 母分数值 8、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

9、 9、根据比与除法、分数的关系,可以理解比的后项不能为0。 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (二)、比的基本性质 1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、根据比的基本性质,可以把比化成最简单的整数比。 4.化简比: (1)依据比的基本性 用比的前项和后项

10、同时除以它们的最大公因数。 两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 两个小数的比:向右移动小数点的位置,先化成整数比再化简。 (2)用求比值的方法。 如: 1510 = 1510 = = 32 5按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 如: 已知两个量之比为 ,则设这两个量分别为 。 6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。 (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3) (三)和比的应用题有关的概念 1、求每份数的方

11、法 和分数和=每份数相差数相差份数=每份数部分数对应份数=每份数 2、图形求比的常见公式 长方体:(长+宽+高)的和=棱长和4 长方形:(长+宽)的和=周长2 3、相遇问题 速度和= 路程相遇时间 第四单元 圆 一、认识圆 1、圆的定义:圆是由曲线围成的一种平面图形。 2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 一般用字母O表示。它到圆上任意一点的距离都相等(画圆切忌别忘记标圆心0) 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。 4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示

12、。 直径是一个圆内最长的线段。 5、圆心确定圆的位置,半径确定圆的大小。(画圆给出半径标半径r=?,给出直径标直径d=?) 6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。 7在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。 用字母表示为:d2r或r 或r=d2 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。 折痕所在的这条直线叫做对称轴。 9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。 10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称

13、轴的图形是: 长方形 只有3条对称轴的图形是: 等边三角形 只有4条对称轴的图形是: 正方形; 有无数条对称轴的图形是: 圆、圆环。 二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。 2、圆周率实验: 在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。 发现一般规律,就是圆周长与它直径的比值是一个固定数()。圆的周长总是它直径的3倍多一些。 3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。 用字母(pai) 表示。 (1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。 圆周率是一个无限不循环小数。在计算

14、时,一般取 3.14。 (2)在判断时,圆周长与它直径的比值是倍,而不是3.14倍。 (3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 4、圆的周长公式:C=d d = C 或C=2 r r = C 2 5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 6、区分周长的一半和半圆的周长: (1)周长的一半:等于圆的周长2 计算方法:2 r 2 即 r (2)半圆的周长:等于圆的周长的一半加直径。 计算方法:r2rrd 三、圆的面积 1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。 2、一条弧和经过这条弧两端

15、的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。 3、圆面积公式的推导: (1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。 (2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 (3)、拼出的图形与圆的周长和半径的关系。 圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 因为: 长方形面积 = 长 宽 所以: 圆的面积 = 圆周长的一半 圆的半径 S圆 = r r = r2 圆的面积公式: S圆= r2 r2 = S 圆的面积公式: S =r22 或S =r2 圆的面积公式: S =r24 或S

16、=r2 4、环形的面积:(环形的面积等于外圆面积与内圆面积的差) 一个环形,外圆的半径是R,内圆的半径是r。(Rr环的宽度) S环= R?2;?2;或 环形的面积公式:S环= (R?2;?2;)。 求环形的面积,一定要先想法分别求出外圆的半径(R)和内圆的半径(r) 再代入公式计算。一步一步的来,这样不容易错误。注意用公式S环 = (R?2;?2;) 计算时,要先算出2个平方数,再相减。切忌相减后再平方。 5、扇形的面积计算公式: S扇=r2(n表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。 而面积扩大或缩小的倍数是这倍数的平方倍。 例如: 在同一

17、个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。 7、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。例如: 两个圆的半径比是23,那么这两个圆的直径比和周长比都是23,而面积比是49 8、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4 圆的周长是直径的倍,圆的周长与直径的比是:1 圆的周长是半径的2倍,圆的周长与半径的比是2:1 9、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。 10、周长计算公式: 知道半径求周长:C=2r 知道直径求周长:C=d 已知周长

18、:D=C 圆周长的一半:周长(曲线) 半圆的周长:周长+直径 C =r2r 面积计算公式:(无论是知道直径或者周长,都应该先求出半径,再求面积) 知道半径求面积:S=r2 知道直径求面积:S=(d2)2 知道周长求面积:S=(C2)2 11、确定起跑线: (1)每条跑道的长度 =两个半圆形跑道合成的圆的周长 + 两个直道的长度。 (2)每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同) (3)每相邻两个跑道相隔的距离是: 2跑道的宽度 (4)当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加厘米。 12、常用各值结果: = 3.14

19、 2 = 6.28 3 = 9.42 5 =15.7 6 =18.84 7 = 21.98 9 = 28.26 10 = 31.4 16 = 50.24 36= 113.04 64 = 200.96 96 = 301.44 4 = 12.56 8 = 25.12 25 = 78.5 13、常用平方数结果 = 121 = 144 = 169 = 196 = 225 = 256 = 289 = 324 = 361 第五单元百分数 一、百分数的意义和写法 1、百分数的意义:表示一个数是另一个数的百分之几。 百分数是指的两个数的比,因此也叫百分率或百分比。 百分数通常不写成分数形式,而采用百分号“%”

20、,百分数后面不能带单位名称。 2、千分数:表示一个数是另一个数的千分之几。 3、百分数和分数的主要联系与区别: (1)联系:都可以表示两个量的倍比关系。 (2)区别: 、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位; 分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。 、百分数的分子可以是整数,也可以是小数; 分数的分子不能是小数,只能是除0以外的自然数。 、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作“百分之几” 4、百分数的写法:通常不写成分数形式,而在原来分子后面加上

21、“”来表示。 二、百分数和分数、小数的互化 (一)百分数与小数的互化: 1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。 2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。 (二)百分数的和分数的互化 1、百分数化成分数: 先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。 2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 (三)常见的分数与小数、百分数之间的互化 = 0.5 = 50% = 0.2 = 20% = 0

22、.625 = 62.5% = 0.25 = 25% = 0.4 = 40% = 0.125 = 12.5% = 0.75 = 75% = 0.6 = 60% = 0.375 = 37.5% = 0.0625 = 6.25% = 0.8 = 80% = 0.875 = 87.5% = 0.04 = 4 = 0.08 = 8 = 0.12 = 12 = 0.16 = 16 三、用百分数解决问题 (一)一般应用题 1、常见的百分率的计算方法: 合格率 = 发芽率 = 出勤率 = 达标率= 成活率 = 出粉率 = 烘干率 = 含水率 = 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、

23、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。) 2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题: 数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”: 单位“1”的量分率=分率对应量 (2)分率前是“多或少”的意思: 单位“1”的量(1 分率)=分率对应量 3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。 解法:(建议:最好用方程解答) (1)方程: 根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法): 分率对应量对应分率 = 单位“1”的量

24、4、求一个数比另一个数多(少)百分之几的问题: 两个数的相差量单位“1”的量 100%或: 求多百分之几:(大数小数 C 1) 100% 求少百分之几:( 1 - 小数大数) 100% (二)、折扣 1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。 几折就表示十分之几,也就是百分之几十。例如八折=80,六折五=0.65=65 2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35% 几成”就是十分之几,也就是百分之几十。如:五成表示()% “折扣”表示某种商品降价的幅度。如:75折就表示现价是原价()% (三)、纳税 1、纳税:纳税是根据国家税法的有关规定,按照

25、一定的比率把集体或个人收入的一部分缴纳给国家。 2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。 3、应纳税额:缴纳的税款叫做应纳税额。 4、税率:应纳税额与各种收入的比率叫做税率。 5、应纳税额的计算方法:应纳税额 = 总收入 税率 (四)利息 1、存款分为活期、整存整取和零存整取等方法。 2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。 3、本金:存入银行的钱叫做本金。 4、利息:取款时银行多支付的钱叫做利息。 5、利率:利息与本金的

26、比值叫做利率。 6、利息的计算公式:利息本金利率时间 7、注意:如要上利息税(国债和教育储藏的利息不纳税),则: 税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率) 8、本息=本金+利息 第六单元 统计 一、扇形统计图的意义: 用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。 也就是各部分数量占总数的百分比(因此也叫百分比图)。 二、常用统计图的优点: 1、条形统计图:可以清楚的看出各种数量的多少。 2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。 三、扇

27、形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。) 第七单元 数学广角 一、“鸡兔同笼”问题的特点: 题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。 二、“鸡兔同笼”问题的解题方法 1、猜测法 2、假设法 (1) 假如都是兔 (2) 假如都是鸡 (3) 古人“抬脚法”: 解答思路: 假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。关系式: 鸡兔总脚数2-鸡兔总数 = 兔的只数; 鸡兔总数 - 兔的只数 = 鸡的只数。 6 20 20

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服