收藏 分销(赏)

2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc

上传人:天**** 文档编号:4651598 上传时间:2024-10-08 格式:DOC 页数:8 大小:112.23KB
下载 相关 举报
2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc_第1页
第1页 / 共8页
2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc_第2页
第2页 / 共8页
2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc_第3页
第3页 / 共8页
2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc_第4页
第4页 / 共8页
2018版高中数学人教版A版必修五学案:§1.1.2余弦定理(一)正式版.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、11.2余弦定理(一)学习目标1.掌握余弦定理的内容与推论及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题知识点一余弦定理及其证明1余弦定理的表示及其推论文字语言三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍符号语言a2b2c22bccos_A,b2a2c22accos_B,c2a2b22abcos_C推论cos A,cos B,cos C2.余弦定理的证明(1)课本上采用的证明方法:如图,设a,b,c,则cba,|c|2cc(ba)2a22abb2a22abcos_Cb2,c2a2b22abcos C.(2)利用坐标法证明如图,建立平

2、面直角坐标系,则A(0,0),B(ccos_A,csin_A),C(b,0)(写出三点的坐标)aBC,a2b2c22bccos A.思考1在ABC中,若a2b2bcc2,则A_答案解析由题意知,cos A,又A(0,),A.思考2勾股定理和余弦定理的联系与区别?答案二者都反映了三角形三边之间的平方关系,其中余弦定理反映了任一三角形中三边平方间的关系,勾股定理反映了直角三角形中三边平方间的关系,是余弦定理的特例知识点二用余弦定理解三角形的问题利用余弦定理可以解决以下两类问题:(1)已知两边及其夹角解三角形;(2)已知三边解三角形思考已知三角形的两边及一边的对角解三角形,有几种方法?答案不妨设已知

3、a,b,A,方法一由正弦定理可求得sin B,进而得B,C,最后得边c.方法二由余弦定理a2b2c22bccos A得边c,而后由余弦或正弦定理求得B,C.题型一已知两边及其夹角解三角形例1在ABC中,已知a2,b2,C15,求角A,B和边c的值(cos 15,sin 15)解由余弦定理知c2a2b22abcos C4822284,c.由正弦定理得sin A,ba,BA,A30,B180AC135,c,A30,B135.反思与感悟已知三角形的两边及其夹角解三角形的方法(1)先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角

4、)求解(2)用正弦定理求解时,需对角的取值根据“大边对大角”进行取舍,而用余弦定理就不存在这些问题(因为在(0,)上,余弦值对应的角是唯一的),故用余弦定理求解较好跟踪训练1在ABC中,角A,B,C的对边分别为a,b,c,若a3,b2,cos(AB),则c等于()A4 B. C3 D.答案D解析由三角形内角和定理可知cos Ccos(AB),又由余弦定理得c2a2b22abcos C94232()17,所以c.题型二已知三边(或三边的关系)解三角形例2在ABC中,已知a2,b62,c4,求A,B,C.解根据余弦定理,cos A.A(0,),A,cos C,C(0,),C.BAC,A,B,C.反

5、思与感悟已知三边(或三边的关系)解三角形的方法(1)利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为0,角为直角;值为负,角为钝角(2)方法一:两次运用余弦定理的推论求出两个内角的余弦值,确定两个角,并确定第三个角方法二:由余弦定理的推论求一个内角的余弦值,确定角的大小;由正弦定理求第二个角的正弦值,结合“大边对大角、大角对大边”法则确定角的大小,最后由三角形内角和为180确定第三个角的大小(3)若已知三角形三边的比例关系,常根据比例的性质引入k,从而转化为已知三边求解跟踪训练2将例2中的条件改为“abc2(62)4”,求A,B,C.解abc2(62)4,即,不妨设k,则a2k,b

6、(62)k,c4k,下同例题解法题型三已知两边及其中一边的对角解三角形例3在ABC中,已知角A,B,C所对的边分别为a,b,c,若a2,b,A45,求边c.解方法一在ABC中,根据余弦定理可得a2b2c22bccos A,即c22c60,所以c3.又c0,所以c3.方法二在ABC中,由正弦定理得sin B,因为ba,所以BA,又B(0,180),所以B30,所以C180AB105,所以sin Csin 105sin(4560)sin 45cos 60cos 45sin 60,故c3.反思与感悟已知三角形的两边及其中一边的对角解三角形的方法可根据余弦定理列一元二次方程求出第三边(注意边的取舍),

7、再利用正弦定理求其他的两个角;也可以由正弦定理求出第二个角(注意角的取舍),再利用三角形内角和定理求出第三个角,最后利用正弦定理求出第三边跟踪训练3已知在ABC中,b,c3,B30,解此三角形解方法一由余弦定理b2a2c22accos B得()2a2322a3cos 30,a23a60,a或a2.当a时,ab,A30,C120;当a2时,由正弦定理得sin A1,又A(0,180),A90,C60.C60,A90,a2或C120,A30,a.方法二由bcsin 30知本题有两解由正弦定理,得sin C,C60或120.当C60时,A90,由勾股定理得a2;当C120时,A30B,a.C60,A

8、90,a2或C120,A30,a.1在ABC中,符合余弦定理的是()Ac2a2b22abcos CBc2a2b22bccos ACb2a2c22bccos ADcos C答案A解析由余弦定理及其推论知只有A正确2ABC的内角A,B,C的对边分别为a,b,c.已知a,c2,cos A,则b()A. B. C2 D3答案D解析由余弦定理,得5b2222b2,解得b3,故选D.3在ABC中,角A,B,C所对的边分别为a,b,c,若C120,ca,则()AabBabCabDa与b的大小关系不确定答案A解析cos 120,baa.4在ABC中,若a2b2c2ab,则角C的大小为_答案解析cos C,又B

9、(0,),B.5在ABC中,角A,B,C所对的边分别为a,b,c,若a1,b,c,则B_答案解析cos B,又B(0,),B.1.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角(2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角(3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角2利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角或已知三边能直接利用余弦定理解三角形(2)若已知两边和一边的对角,既可以用正弦定理又可以用余

10、弦定理解三角形,但用正弦定理时要注意不要漏解或多解学习不是一朝一夕的事情,需要平时积累,需要平时的勤学苦练。有个故事:古希腊大哲学家苏格拉底在开学第一天对他的学生们说:“今天你们只学一件最简单也是最容易的事儿。每人把胳膊尽量往前甩,然后再尽量往后甩。”说着,苏格拉底示范做了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事,有什么做不到的?过了一个月,苏格拉底问学生:每天甩手300下,哪个同学坚持了,有90的学生骄傲的举起了手,又过了一个月,苏格拉底又问,这回,坚持下来的学生只剩下了80。一年过后,苏格拉底再一次问大家:“请告诉我,最简单的甩手运动。还有哪几个同学坚

11、持了?”这时,整个教室里,只有一个人举起了手,这个学生就是后来成为古希腊另一位大哲学家的柏拉图。同学们,柏拉图之所以能成为大哲学家,其中一个重要原因,就是,柏拉图有一种持之以恒的优秀品质。要想成就一番事业,必须有持之以恒的精神,大家都熟悉愚公移山的故事,愚公之所以能够感动天帝,移走太行、王屋二山。正是因为他具有锲而不舍的精神。戎马一生,他前十次革命均告失败,但他百折不挠,终于在第十一次革命的时候,推翻了清王朝的统治,建立了中华民国。这些故事,情节不同,但意义都是一样的,它告诉无们,做事要有恒心。旬子讲:“锲而不舍,朽木不折;锲而舍之,金石可镂。”这句话充分说明了一个人如果有恒心,一些困难的事情

12、便可以做到,没有恒心,再简单的事也做不成。学习是一条慢长而艰苦的道路,不能靠一时激情,也不是熬几天几夜就能学好的,必须养成平时努力学习的习惯。所以我说:学习贵在坚持!当下市面上关于教授学习方法的书籍不少,其所载内容也的确很有道理,然而当读者实际应用时,很多看似实用的方法用来效果却并不明显,之后的结果无非是两种:要么认为自己没有掌握其精髓要领,要么抱怨那本书的华而不实,但最终肯定还是会回归到当初的原点。这本学会学习在一开始并没有急于兜售自己的方法,而是通过测试让读者真正了解自己,从而找到适合自己思维方式的学习方法,书的第一部分就是左脑还是右脑思维测试和视觉、听觉和动觉学习模式测试,经过有效分类后

13、,针对不同读者对不同思考和接收接受学习的特点,有针对性的分别给出建议,从而不断强化自己的优势。在其后书中的所有介绍具体学习方法章节的最开始,都是按照不同学习模式给出各种学习方法不同的建议,这是此书区别于其他学习方法类书籍的最大特点,这种“因材施教”的方式能让读者有种豁然开朗的感觉,除了能够得到最适合自己的有效的学习方法也能更深入的认识客观的自己,不论对学习还是生活都有帮助。除了“针对性”强外,本书第二大特点就是“全面”,全书都是由一篇篇短文、图表集成,更像是一本博文或者PPT课件合集,每个学习方法的题目清晰明了十分便于查找,但也因此有些章节内容安排的比较混乱,所幸每一章节关联性并不太强,每个章

14、节都适合独立检索来阅读学习。其内容从“时间规划”、“笔记”“阅读”直到“考试”几乎涉及了所有学习中的常遇问题,文中文字精炼没有过分的渲染,完全是纯纯的“干货”,可以设身处地的想象:当自己面对学海之中手足无措之时,长篇大论的方法肯定会无心查看,明了的编排,让人从目录中就能一目了然的找到自己想要的,一篇篇短文尽可能在最少的时间让读者得到最有用的信息,是一部值得学习的人们不断自我提高的有力武器。曾经看到一个有意思的心理测试:用“正确的方法”、“错误的方法”和“积极的行为”、“消极的行为”,来自由搭配,看如何搭配出最好和最坏的结果,“正确方法”配合“积极的行为”无疑是最好的结果,然而我们会很“惯性”想

15、当然的认为,“错误的方法”和“消极的行为”搭配是最坏的结果,其实“错误的方法”加上“积极的行为”才是最坏的结果,这会让人在错误的路上越走越远,学习也是同理,一味钻牛角尖般的生搬硬套不适合自己的方法不论多努力都只会离成功越来越远,而好的学习方法加上积极的学习态度无疑会让你如虎添翼。这是每个人都需要的,起码在学生的时候如果遇到,或者人生会少一些遗憾,我只恨我遇见的晚了点,可是现在已是终身学习的年代,错过了最恰当的时候,但只要有心又怎会嫌晚呢?本书归类为学习方法-青年读物,是本工具书,学习手册,但不能阻止她成为经典。这本书的副标题为“增加学习技能与脑力”,正是本书的宗旨,本书系统化地阐述了学习技能提

16、升的各个方面,可谓事无巨细的令人发指啊。整体来讲主要包括7个方面,分别是学习模式,时间管理和学习技巧规划,笔记记录技巧,阅读技巧,记忆,应试技巧,拾遗。全书的结构采取的是总分的形式,前三个方面是总的部分,算是增加学习技能的准备,从认识自己的学习模式开始,然后采取任何事都需要的时间管理技巧,再总体地讲一下学习技巧规划的事项。然后底下是分的部分,将学习的包含的各个方面的技巧进行分开阐述,分别有笔记记录,阅读,记忆,应试以及最后的拾遗。系统地讲述了学习的几乎所有方面。让读到她的人如果实践的话不仅能在学习上得到提高,在脑力上或者说理解力上肯定会受益匪浅。在此,说句题外话,我一直觉得日本人写书在细节上做

17、的是无与伦比的,但是这本书让我对这个看法有了一定的动摇,因为她里面的讲述部分让我觉得美国是个应试教育的国家吗,简直比我们中国还要应试。那个考试应对细节的部分放在中国,一点也没有违和感的,好吗?所以他们能出现这样的情况,从没到过日本的人能够写出描写日本人的书,然后让日本人都觉得是经典的,没有在企业里做过实务管理的德鲁克能成为管理上的大师,其理念影响了全世界不得不说,美国的教育真不是盖的。细节上,我印象比较深的是,作者开篇开始传授如何应该认识自己的学习模式,运用了一些测试题目,然后根据结果找出与自己最近似的学习模式,她把学习模式分为几种情况,分别有左脑型,右脑型,还有另外的分法,为视觉的,听觉的,

18、动作的。我看了一下,确实有跟自己近的类型,我就是视觉的,对号入座后就可以比较直接的去扬长避短了。然后,作者说了,做任何事情,时间管理技巧都是不可缺少的,她不仅教导的是学习的技能,还有很多其他的道理,对我们人生都是有益的,我相信,如果我们的孩子从小就学习这些,将会受用终生。还有,作者提到了学习技巧规划里的家庭档案系统,将我们现在工作中的管理引进了学习中,这是一个非常好的学习习惯,如果孩子持续的做,严格地做,获得的收益将无法估量,因为,这在我们现在工作中都必须要用的管理信息的技能,实在是太可贵了,孩子将这种技能与阅读结合起来,保管好自己思维历程,可以获得持续的提高,直到最后展翅翱翔,他最可贵的是,

19、可以系统地提升自己,从而达到书中简介里提到的那样,碰到不会的领域的时候,可以很快的用这些方法,工具建立起模型,系统,游刃有余地攻克自己之前没接触的领域,提升自己的理解力,我想这正是我们学习的比较重要的一个目的吧。最后,我影响比较深的就是作者提供的那些小工具了,包括笔记的表格,辅助记忆的表格,帮助整理文档的夹子,应对考试的技巧,缓解紧张的方法我觉得全书对于如何增加学习技能和脑力的讲述是有道理的,我也相信通过实践作者在书上所提到的方法,定能在学习中得到提高。但是,那也不是一朝一夕的事情,就像我们大家都知道的那个故事,在美国得到诺贝尔奖的科学家说,自己得奖最大的原因都是在幼儿园里学习的最基本的道理,

20、就是说要和郭靖一样,不要贪多吃不烂,认定他就要好好地坚持去做,不要停。我自己喜欢的是家庭归档系统,虽然不是学习过程中的技能,只属于学习准备的东西,但是如果坚持井井有条的那样整理自己的学习思维,对自己的收益将难以估量。稍显不足的地方是,第一,本书的语言太过精练,感觉就像没有主观感情一样,要命的是有很多词语或者概念读的时候甚至不知道什么意思,书中也没做讲解,本来就看的比较费力,现在好了,作者也不等你,直接把你撂那。第二,作者很多地方就像立一个提纲一样,直接让你自己去参考多少多少页,这个太不习惯了。第三,作者在书中提到各种学习的类型,但是并没有就这种类型合适他们的学习方法做开展或者介绍,比如,将学习分为好几种类型的那个部分,有内省的,有外联的之类,然而并没有对各种类型进行针对性的指导。从而她的有些观点就不太适用,像成立学习小组的,这个对于内向的人,在我国这样的学习环境中是比较的困难,但作者没有就如何做提出建议,只是告诉读者这么做,会显得不够全面或者落空。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服