资源描述
资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
边坡工程设计施工新技术与 质量检测验收实务全书
主编!王珊
北京北影录音录像公司
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
第 一 篇
边坡工程设计施工 技术总论
第一篇#边坡工程设计施工技术总论
)#)
第一章# 边坡运动危害及防范基础
第一节# 边坡的应力分布特征
边坡的变形破坏与其应力分布状态密切相关!因此!了解边坡周围岩土体中的应力分 布状况!对于认识边坡变形破坏的机制是非常必要的"根据有限元法分析和光弹试验结 果!边坡的应力状态有如下的特点#
!"坡体中主应力迹线发生明显偏转!坡面附近最大主应力 !! 的方向与坡面近乎平 行!最小主应力!# 与坡面近于垂直$图!$!$!%"同时!坡体中存在与坡面近于平行的剪 应力!其总的趋势是由坡内向外增高!愈近坡脚处愈高!向坡内则逐渐恢复到初始应力状 态"
%"坡脚附近形成一明显的应力集中带!特点是最大主应力与最小主应力差达到最大 值!出现最大的剪应力集中"坡度愈陡!应力集中愈明显"
#"坡面处的岩$土%体!由于侧向压力近于零!实际上变为两向应力状态!向坡内逐渐 恢复为三向应力状态"
&"在坡顶和坡面的某些部位!由于水平应力显著降低!最小主应力可能成为拉应力!
形成张力带$图!$!$%!%"
图!$!$!#边坡主应力迹线与最大剪应力迹线分布示意图
实线&主应力迹线’虚线&最大剪应力迹线
上述应力分布特征是以边坡构成物质为各向同性连续体而进行研究的"实际上!边 坡的应力分布要复杂得多!它受到岩土体的初始应力状态(坡形(岩土体结构等多种因素 的影响"
岩土体内的初始应力!一般多为自重应力"但在某些地区$特别是新构造运动强烈的 地区%!地壳运动可能使岩土体中残存有较大的水平应力$残余构造应力%"这种水平应力 增强了坡脚附近的应力集中及坡顶(坡脚张力带的发展$图!$!$%"%!加剧了边坡变形
(&(
边坡工程设计施工新技术与质量检测验收实务全书
破坏程度和范围!
图!$!$%#坡面和坡顶张力带!图中阴影部分"的分布
!""’#()#%""’&*)##""’+()#&""’,*)#*""’-()
!."侧向水平残余构造应力##"岩土的天然重度##"坡高
坡形是影响坡体内应力分布的主要因素!坡角增大$坡面与坡顶张力带的范围扩大$
坡脚的剪应力也增高!平面上呈凹形的边坡$由于受坡面走向方向两侧的支撑作用$应力 集中程度有明显减缓$坡脚最大剪应力值也显著降低$凸形边坡则恰与此相反!
坡体中不同形式的结构面常对边坡的变形破坏起控制作用$这在岩质边坡中表现尤 为显著!在结构面的周边出现应力集中现象$应力集中的特点主要取决于结构面的产状 与最大主%压&应力的关系!当结构面与主应力方向平行时$在结构面端点将出现拉应力 或剪应力集中$引起向结构面两侧张裂%图!$!$#!&!当结构面与主应力垂直时$沿结 构面将出现切向拉应力$或在端点处出现垂直于结构面的压应力$这有利于结构面的压密 和稳定%图!$!$#"&!当主应力与顺坡向结构面斜交时$特别是在两者成#()$&()交角 的情况下$将出现最大的剪应力与拉应力$对边坡的稳定十分不利%图!$!$#$&!在结 构面的交汇或转折处$由于应力受到阻滞$形成高的拉应力或压应力集中区$这种应力集 中区可能成为边坡变形破坏的始点%图!$!$#%&!另外$在软质岩体中$一般应力集中 程度较小#在硬质岩体中$沿结构面应力集中程度较高#在软硬两种岩体界面处$硬岩的一 侧应力值较高!
图!$!$##坡体中结构面上应力集中的特点
%!&!! 与结构面平行#%"&!! 与结构面垂直#%$&!! 与顺坡向结构面斜交#%%&结构面交汇处
第二节# 边坡变形破坏的基本形式
边坡在其形成过程中$不但发生上述坡体内应力上的变化$而且还遭受风化’剥蚀等
第一篇#边坡工程设计施工技术总论
(*(
营力的作用使其强度不断降低!在这两方面的影响下"边坡可能产生局部的或整体的变
形与破坏!变形#破坏二者既有区别"又相互联系"它们是边坡运动由量变到质变的两个 不同的阶段!对于自然边坡$习惯称为斜坡%"从变形发展到破坏可能是一个很长的演变 过程&但对于人工边坡"往往由于成坡$挖或堆填%较快"这个过程则有可能是短暂的!
一!边坡变形
边坡变形是指边坡的岩土体已发生局部的破裂与错动"但还未形成贯通性的破坏面! 边坡变形虽不能认为边坡已失稳"但它是边坡破坏前的征兆!研究边坡变形能够了解边 坡运动的全过程"以便估计边坡稳定性的现状"并预测其破坏的可能性"边坡变形主要有 松弛拉裂和蠕动两种形式!
!"松弛拉裂#在高陡边坡的坡顶附近"会产生一系列与坡面近于平行的陡倾张裂隙
$图!$!$&%!裂隙可由张力带的拉力形成"也可由坡体物质被剥蚀后卸荷回弹或因残
余构造应力释放而形成!
图!$!$&#边坡张裂隙
坡体被松弛拉裂后"不但岩土体的整体性被破坏"而且水和风化作用更容易深入坡
体"促使岩土体更进一步削弱"最终导致边坡破坏!
%"蠕动#边坡岩土体在自重等应力的作用下"发生向临空面方向长期而缓慢的变形" 称为边坡蠕动或蠕滑!除自重应力"卸荷#构造应力释放#孔隙水压力及地震等也能造成 边坡蠕动!根据蠕动是否受已有结构面控制"可将其分为’
$!%不受已有结构面控制#这种情况在均质土坡和薄层软岩边坡较为典型!图!$!
$*为均质土坡的蠕滑情况!蠕滑受最大剪应力面所控制!在潜在滑面以上为一剪切蠕
变带"密实粘土的应变值$!%可达厚度的%"*/!变形进一步发展"则已进入滑坡阶段!
图!$!$+为反坡向的薄层岩质边坡沿最大剪力带产生的蠕滑!坡的后缘被拉裂"
岩层发生挠曲!如剪切面进一步贯通"则发展为滑坡!在反坡向岩层倾角很陡的情况下"
薄岩层的端部会向上弯曲"厚层或块状岩层则可能发生弯折倾倒!
$%%受已有结构面控制#当边坡中存在顺坡向软弱结构面时"蠕滑常会沿结构面发 生"坡体后缘出现拉裂$图!$!$,%!如果结构面的倾角较小"蠕滑比较缓慢&如果结构 面的倾角接近于其残余摩擦角且后缘拉裂面贯通时"就形成滑坡"迅速滑动!
&+&
边坡工程设计施工新技术与质量检测验收实务全书
图!$!$*均质土坡中的蠕滑
%!!%%"最大剪应力迹线#%0!"潜在滑面#
&"坡面变形#&&"坡顶沉降量#’"剪变带厚度
图!$!$+#反坡向薄层岩质边坡受重力作用发生蠕滑
!"黑云母片岩#%"混合岩##"花岗岩#&"覆盖层
图!$!$,#蠕滑受已有结构面控制因开挖面发展为滑坡
!"原地面线#""原开挖线#$"沿多个层面滑动的页岩层
二!边坡破坏
随着边坡变形的发展$变形所产生的局部破坏面将逐渐扩展%一旦破坏面形成连续
的与外界贯通的分离面$分离的岩土体将由缓慢的蠕动转变为增速移动$以一定的加速度 脱离母体$这时$边坡即已破坏%当边坡受到水的渗入!振动!坡角增大及外荷载作用时$ 易发生上述情况%
边坡破坏的形式如表!$!$!所示$其中滑坡!崩塌及泥石流等三种比较常见%它们 对工程的危害很大$下面将分节进行讨论%
第一篇#边坡工程设计施工技术总论
&,&
表!$!$!#自然边坡!斜坡"破坏形式分类
破坏类型 特##征
滑坡 #边坡上的岩土体在重力!水!地震等因素的影响下失去稳定"沿贯通的破坏面#带$整体
向下滑动
崩塌 #陡坡或悬崖上的大块岩土体在重力或地震的作用下"突然向下崩落%崩落的岩块顺山 坡翻滚!跳跃!撞击!破碎"最后堆于坡脚%大规模的崩塌称为山崩
塌方 #陡坡上的风化岩屑在重力!水!地震等影响下向坡脚坍落
倾倒 #边坡岩体受重力长期作用或构造应力释放"岩块发生向临空面转动或转动滑移 坐落#错落$ #边坡底部岩体因自重压密!被掏空或软岩塑流挤出"至使其上面的岩土作整体下错位移 坠落#落石$ #悬崖或陡坡上的个别岩块突然掉落"但坡体本身基本稳定%将要坠落的岩块称为危岩 剥落#散落$ #边坡表层岩土因受物理风化而成碎块"经常不断地沿坡面滚落"堆于坡脚
塌陷 #边坡因冲刷!溶蚀!掏空!采空等原因而引起上覆岩土体下沉 冲刷 #边坡的岩土在流水的动力作用下被冲蚀!搬运
潜蚀 #边坡因地下水活动而造成的破坏
泥石流 #由暴雨或迅速融化冰雪而形成的急骤水流"挟带堆积在缓坡或山谷中的大量堆积物成 为泥石洪流"冲向山前地带
复合破坏 #两个或两个以上上述破坏类型的组合
第三节# 滑坡
边坡上的岩土体在自然或人为的因素影响下失去稳定"沿贯通的破坏面#或带$整体 下滑的现象"称为滑坡%它往往是缓慢!长期!间歇性地向下滑动"但也有一些滑坡表现为 急剧的运动%滑坡常造成巨大危害"在各类边坡破坏中它是危害性最大!分布最广的一 类%例如"!-1#年甘肃洒勒山滑坡"三分钟内 +(((万 2# 土体下滑"掩埋了三个村庄"死
亡 %#,人%又如"!-1*年三峡新滩滑坡"#(((万 2# 土石下滑"%((万 2# 滑入长江"激起
#+2 高的涌浪"毁船,,条"!(人丧生"新滩古镇也被毁%过去在建设中"由于对滑坡认识 不足"有的工程被滑坡摧毁"有的则被迫迁厂或耗费巨资来整治%在山区铁路建设中"如
宝成!宝天!鹰厦等线也都花费了大量投资整治滑坡"才保证了线路通畅%因此"在工程建 设中怎样认识和防治滑坡就成为一项重要的任务%
*1*
边坡工程设计施工新技术与质量检测验收实务全书
图!$!$1#滑坡要素分布
!!"平面图#!""剖面图
一!滑坡的形态特征
滑坡具有明显的形态和边界$它是判断滑坡存在和范围的重要依据%图!$!$1表
示均质滑坡的形态和细部结构$其特征如下&
!"滑坡体#简称滑体$即与母体脱离向下滑动的那部分土石体%滑体在下滑时一般 能大致上保持整体性$但在发展的过程中多有不同程度的变形和解体%
%"滑坡床#滑体之下未受滑动的岩!土"体%
#"滑坡面#简称滑面$滑体与滑坡床之间的分界面$也即贯通的破坏面%滑面由于滑 动摩擦$常较光滑且有擦痕%滑面以上受滑动揉皱的土石带称为滑!动"带$其厚度为几厘
米至几米%在均匀粘性土和碎石土中$滑面多呈圆弧形#在岩层中$滑面形状受软弱结构 面控制$多呈平面形’楔形或折线形%
&"滑坡周界#滑体与其周围未滑动部分在平面上的分界线%它圈定了滑坡的范围%
沿滑坡两侧的周界线常会形成冲沟%当冲沟发育很深时$将在滑坡后缘趋向会合$呈现
(双沟同源)%这种现象常可用来判定滑坡的存在及侧向边界的位置%
*"滑坡壁#滑坡后都滑下所形成的陡壁%它实际上是滑面的露出部分$平面上多呈 圈椅状%壁高数十厘米至数十米$个别可达百米%
+"滑坡台阶#滑体因各级下滑速度和幅度不同而形成的一些台阶%
,"封闭洼地#滑体与滑坡壁之间有时拉开或陷落形成洼地%它可集水成沼泽或水 塘%老滑坡的洼地常被填平%
1"滑坡舌#滑体前缘伸出呈舌状的部分%舌根隆起部分称为滑坡鼓丘%最前端为滑 面出露部分叫滑坡出口%
-"滑坡裂缝#滑体在滑动时由于各部分受力性质不同$产生不同类型的裂隙系统%
一般分为拉张裂缝’剪切裂缝’鼓张裂缝等%
上述滑坡形态特征也统称为滑坡要素%
第一篇#边坡工程设计施工技术总论
*-*
二!滑坡的发育阶段
滑坡的发生和发展经历不同的变化过程!一般可划分为三个阶段"
!"蠕滑阶段#边坡产生局部破坏面#包括新产生的或沿原有结构面的局部破坏面$! 后缘出现断续的拉张裂缝并有不大的错距!两侧也出现断续的剪切裂缝!坡脚可能有挤 压%渗水现象!但尚未形成贯通的滑动面&
%"滑动阶段#当滑动面已贯通并有了出口!后部及两侧主裂缝也连通!两侧羽状裂缝 已错开!后缘下陷滑坡壁出露!前缘隆起!坡面出现台阶!这时滑坡已处于滑动阶段!滑动 速度可明显觉察到&另外!如果坡面长有树木!则树木将会歪斜!形成’醉林(&
在高陡的边坡地带!当滑面很陡且呈脆性破坏时!滑坡能出现剧滑阶段!滑坡的滑动 速度很快!后缘裂缝急剧张开%下错!两侧及前缘产生坍塌!滑体能向前滑移较大的距离& 滑动时可发出岩石挤压破碎的响声!甚至产生气浪&
#"稳定阶段#经滑动之后!滑体的重心降低!能量消耗于克服滑移阻力和滑体变形! 滑带的物质因重新固结而强度有所恢复&这样!滑体的抗滑力增加!滑动速度逐渐减小! 滑体在自重压力作用下压密!地面裂缝闭合消失!滑坡趋于稳定&经过一段时间之后!滑 坡台阶及滑坡壁变得平缓!壁上生长草木!原来歪斜的树梢又重新长直!成为弯曲的’马刀 树(&
滑坡稳定之后!如引起滑动的因素消失或减弱!滑坡就能长期稳定)否则!老#或古$滑 坡又能复活!开始新的一轮滑动&
三!滑坡的分类
滑坡的分类方法很多!现将常见的分类列表于后#表!$!$%$&
四!产生滑坡的条件
产生滑坡的条件#或因素$十分复杂!归结起来可分为内部条件和外部条件两个方面& 实践经验表明"不良的地质条件是产生滑坡的内部条件!而人类的工程活动和水的作用则 是触发并产生滑坡的主要外部条件&不具备这些条件!滑坡就不会发生&而在已经发生 滑坡的地区!如有可能人为地改变这些条件!滑坡也有可能得以稳定下来&因此!如果能 充分地认识和正确分析这些内外条件!因势利导!就能解决好滑坡的防治问题&
!"滑坡发育的内部条件产生滑坡的内部条件与组成边坡的岩土的性质%结构%构造和 产状等有关&不同的岩土!它们的抗剪强度%抗风化和抗水的能力都不相同!如坚硬致密 的硬质岩!它们的抗剪强度较大!抗风化的能力也较高!在水的作用下岩性也基本没有变
&!(&
边坡工程设计施工新技术与质量检测验收实务全书
化!因此!由它们所组成的边坡往往不容易发生滑坡"反之!如页岩#片岩以及一般的土则
恰恰相反!因此!由它们所组成的边坡就较易发生滑坡"从岩土的结构#构造来说!主要的 是岩$土%层层面#断层面#裂隙等的倾向对滑坡的发育有很大的关系"同时!这些部位又 易于风化!抗剪强度也低"当它们的倾向与边坡坡面的倾向一致时!就容易发生顺层滑坡 以及在堆积层内沿着基岩面滑动!否则反之"边坡的断面尺寸对边坡的稳定性也有很大 的关系"边坡越陡!其稳定性就越差!越易发生滑动"如果两边坡的坡高和坡长都相同! 但一个是放坡到顶!而另一个却是在边坡中部设置一个平台!由于平台对边坡起了反压作
第一篇#边坡工程设计施工技术总论
*!!*
用!就增加了该边坡的稳定性"另外!滑坡体要向前滑动!其前沿就必须要有一定的空间!
否则!滑坡就无法向前滑动"山区河流的冲刷#沟谷的深切以及不合理的大量切坡都能形 成高陡的临空面!而为滑坡的发育提供了良好的条件"总之!当边坡的岩性#构造和产状 等有利于滑坡的发育!并在一定的外部条件下引起边坡的岩性#构造和产状等发生变化 时!就能发生滑坡"
实践表明$在下列不良地质条件下往往容易发生滑坡!如%!&当较陡的边坡上堆积有 较厚的土层!其中有遇水软化的软弱夹层或结构面’%%&当斜坡上有松散的堆积层!而下伏 基岩是不透水的!且岩面的倾角大于%()时’%#&当松散堆积层下的基岩是易于风化或遇 水会软化时’%&&当地质构造复杂!岩层风化破碎严重!软弱结构面与边坡的倾向一致或交 角小于&*)时’%*&当粘土层中网状裂隙发育!并有亲水性较强的%如伊利石#蒙脱石&软弱 夹层时’%+&原古#老滑坡地带可能因工程活动而引起复活时等等"
如前所述!仅仅具备上述内部条件!还只是具备了滑坡的可能性!而还不足以立即发 生滑坡!必须有一定的外部条件的诱导和触发!才能使滑坡发生"
%"滑坡发育的外部条件#主要有水的作用!不合理的开挖和坡面上的加载#振动#采 矿等!而又以前两者为主"
调查表明$-(/以上的滑坡与水的作用有关"水来源于大气降水#地表水#地下水#农 田灌溉的渗水#高位水池和排水管道的漏水等"一旦水进入边坡岩%土&体内!它将增加岩 土的重度和起软化作用!降低岩土的抗剪强度!产生静水压力和动水力!冲刷或潜蚀坡脚! 当地下水在不透水层顶面上汇集成层时它还对上覆地层产生浮力等等"总之!它将改变 组成边坡的岩土的性质#状态#结构和构造等"因此!不少滑坡在旱季原来接近于稳定!而 一到雨季就急剧活动!形成(大雨大滑!小雨小滑!无雨不滑)!生动地说明了雨水和滑坡的 关系"贵州省曾调查了%&个滑坡!其中有!&个是在雨季或暴雨时发生的"
山区建设中还常由于不合理的开挖坡脚或不适当的在边坡上弃土#建造房屋或堆置 材料!以致破坏边坡的平衡条件而发生滑动"
振动对滑坡的发生和发展也有一定的影响!如大地震时往往伴有大滑坡发生!大爆破 有时也会触发滑坡"
五!滑坡稳定性计算
滑坡稳定性计算!目的在于判定滑坡的稳定程度!为处理滑坡提供依据"计算的方法 有极限平衡法#有限单元法和概率法"其中极限平衡法为最基本的方法"下面将介绍这 种方法"
在进行计算时假定$%!&滑体为一刚性体!不考虑滑体本身的变形’%%&当稳定系数
(34’!时!滑体处于极限状态"
按滑坡滑面的形态有平面滑动#楔形滑动#圆弧形滑动和折线形滑动"其中!除楔形
滑动外!其余三种一般皆按平面问题考虑"
)!%)
边坡工程设计施工新技术与质量检测验收实务全书
!一"平面滑动
当坡体内结构面的走向基本上平行于坡面!结构面倾角小于坡角且大于其摩擦角时"
易发生平面滑动#
!"当坡顶和坡面无张裂缝时$图%"滑坡的稳定系数 (34等于&
图!$!$-#无张裂缝的平面滑坡
$!%立体图’$"%剖面图
$&
式中*)!
# .53’"代入式
(34 ) *.53"467#+$,
*387"
!$!简化后得&
$!-!%
% 387’
(34 )467#+ &$
$!-%%
式中#*(((滑体的重量’
&(((滑体的厚度’
"(((滑面的倾角’
,(((单宽滑面面积’
$(((滑体物质的重度’
#(((滑面摩擦角’
$(((滑面粘聚力#
467"
$&387%"
%"当坡顶$或坡面%出现张裂缝且滑体相对不透水时"裂缝中的水将产生水压力$图!
$!$!(%"(34等于&
图!$!$!(#坡顶有张裂缝的平面滑坡
第一篇#边坡工程设计施工技术总论
.!#.
(34
!*.53"-.-/387""467#+$, !!-#"
*387"+/.53"
式中#.###单宽滑面承受的总空隙水压力$
/###单宽后缘拉裂面承受的总空隙水压力%
根据图!$!$!(!&式中
, ) !# -0".539." !!-&"
$
. ) ! :1:!# -0".539." !!-*"
%
/ ) ! :1%
!-+
$ : ! "
%
$
%
* ) ! #%’(!- !0)#"%*.54"-.54 + !!-,"
%
##张裂缝的位置和深度能够从地质剖面图中确定%有困难时&可按下面的方法估算%
当边坡为干的或接近于干的时&公式!$#中的. 和/ 为零&公式变为,
(34 )467#+ $,
!!-%""
467"
*387"
代入* 值&并对上式的右边求极小值&可求得张裂缝的临界深度!参看图!$!$!("",
0.; ) #!!-$467".54% !!-1"
张裂缝的相应位置为
".; ) #!$.54".54%-.54%" !!--"
#"如果滑体透水且受地下水渗流作用时&则应考虑动水力对稳定的影响!图!$!$
!!"%一般假定动水力的作用方向平行于滑面&则 (34为"
!,!$+,%$2".53"467#+$,
(34 )
!!-!("
!,$+,$2"387"+3
! %
式中#,!-,% ###地下水位以上及以下滑体的面积$
3###动水力$
$0###滑体岩土的浮重度%
图!$!$!!#动水力对滑体的作用
&"在地震区需考虑地震力的作用&(34等于,
( )
* .53"-4387""46 7#+$,
34 *387"+4.53"
!!-!!"
)!&)
边坡工程设计施工新技术与质量检测验收实务全书
式中 4 为地震力!4)(*!( 为水平地震力系数"
!二"楔形滑动
当岩质边坡的两组结构面交线倾向坡面#交线倾角小于坡角且大于其摩擦角时!易发 生楔形滑动$图!$!$!%!%"这种滑动情况比较复杂!下面仅考虑滑体沿结构面交线滑 动的情况"
图!$!$!%#楔形滑坡
$!%立体图&$"%垂直交线视图&$%沿交线视图
将图!$!$!%"中的5 分解为垂直于两结构面的方向力56#5<!按静力平衡条件’
5!387$&- ! %) 5<387$&+ ! %
%’ %’
56.53$&- ! %) 5<.53$&+ ! %)*.53
%’
将以上二式联合求解!得’
%’ #
!
* .53#387$& + % ’%
56 )
$!-!%%
387’
!
* .53#387$& - % ’%
5< )
$!-!#%
楔体的稳定系数 (34等于’
387’
(34 ) 56467#6 +5<467#< +$6,6 +$<,<
*387#
$!-!&%
式中#6#$6(((面 , 的摩擦角#粘聚力&
#<#$<(((面6 的摩擦角#粘聚力&
,6#,=(((面 , 和面6 的面积&
*(((楔体重量"
其余符号见图!$!$!%"
结构面交线的方位角"6<和倾角#6<可用以下公式求得’
"6< )467-!.53""467#" -.53"6467#6
387"6467#6 $387"<467#<
$!-!*%
第一篇#边坡工程设计施工技术总论
+!*+
#64 ’467-!!.53"6< -"6#467#6$
)467-!!.53"6< -"<#467#<$ "!-!+#
式中#"6%#6 &&&面 , 的方位角和倾角’
"6%#< &&&面6 的方位角和倾角(
!三"圆弧形滑动
对于均匀土质边坡%节理发育的岩质边坡或弃石堆边坡)易发生旋转破坏)滑面呈圆 弧形(这类滑坡稳定分析最常见的方法是条分法下面介绍一种核算滑坡滑动后)滑体当 前所处稳定状况反算法&&&综合$值法(
该法是将滑坡纵剖面恢复到原有状态)并假定此时坡体处于极限平衡状态"(34’!#)
滑面的抗剪强度以粘聚力为主)据此求取已知滑面的综合粘聚力$综合 值(然后)将$综合 值
代入当前状态滑体的稳定性计算式中)求 (34值"图!$!$!##*
(34 ) * %%% +$ 78
"!-!,#
综合
* %
! !
图!$!$!##综合$值法计算滑坡稳定性示意图
式中#*!%*%&&&经过滑弧圆心铅垂线至990两侧的滑体重’
%!%%%&&&992两侧滑体重心至992的距离’
7&&&滑弧长度’
8&&&滑弧半径(
上述计算)对于滑带物质为粘性土)滑动过程中孔隙水压力不易消散时)才较准确"(
’(#(当滑带由粗碎屑组成)滑动时易排水)则可认为$%()采用综合 (值法求467(综合 )
再代入滑动后的滑体稳定计算式)验算其相对稳定程度(
!四"折线形滑动
当岩体沿同倾向多结构面或堆积土层沿下伏基岩面发生滑动时)滑面常呈折线形"图
!$!$!&#(此类滑坡的稳定性多采用传递系数法计算(
计算时按滑面折线转点将滑体分块)并假定*"!#每一块段的滑面为一直线’"%#各块
段滑动推力的作用方向平行于相应各块段的滑面)其作用点位于两块段分界面的中点(
每块段的剩余下滑力为*
某块段的剩余下滑力’该块段的下滑力 >(34$该块段的抗滑力 图 !$!$!&"!#第一块段的剩余下滑力为*
,!+,
边坡工程设计施工新技术与质量检测验收实务全书
图!$!$!&#折线形滑坡稳定性和推力计算示意图
:! ) ;!(34 - !5!<! +$!,!") (34;! -8! !!-!1"
##第二块段的剩余下滑力为#
:% ) $:!.53!%! -%%"+;%%(34 - $5%<% +$%,% +:!387!%! -%%"<%%
##上式整理后得#
:% ) (34;! +:!$.53!%! -%%"-387!%! -%%"<%%- !5%<% +$%,%"
令(!’.53!%!-%%"$387!%!-%%"<%
上式简化为#
:% ) (34;% +:!(! -8% !!-!-"
式中#;&&&某块段的下滑力 ;!’;% 为第一块段及第二块段的下滑力(
8&&&某块段的抗滑力(
#&&&传递系数)#! 为第一块段传至第二块段的传递系数(
<’$&&&某块段滑面的摩擦系数和粘聚力*
将式!!$!1"代入式!!$!-"得#
:% ) !(34;! -8!"(! +(34;% -8%
) (34!;!(! +;%"- !8!(! +8%"
如果滑坡有几块段)则#
:# ) (34!;!(!(% +;%(% +;#"- !8!(!(% +8%(% +8#"++
:7 ) (34!;!(!(%++(7-! +;%(%++(7-! + ++ ;=-!(=-! +;="
- !8!(!(%++(7-! +8%(%++(7-! + ++ +87-!(7-! +87"
=-!
7$!
(
& !8>8 3"+)7
>)! @’8
令:7’()并用连乘号 ) 及总和符号 * 表示)得#?34’=-!
7$!
& !;>;(3"+)7
式中#(3’.53!%>-%>$!"$387!%>-%>A!"467(>A!
=-!
3)>
) )(3(>(>+!(>+%++(=-!*
>)!
@’8
总的说来)在进行滑坡稳定计算时)应注意以下几点#
!"按滑坡滑面形态区分出平面滑块’楔形滑块’圆弧形滑动和折线形滑动)选用相应 的计算公式(
%"宜根据测试成果’反算法和当地经验综合确定岩土的强度指标(
#"当有地下水时)计算应计入浮托力和水压力(
第一篇#边坡工程设计施工技术总论
+!,+
&"当有地震!冲刷!人类活动等影响因素时"尚应考虑这些因素对稳定的影响#
*"另外"当有局部滑动可能时"除验算整体稳定外"尚应验算局部滑体的稳定$
六!滑坡推力计算实例
在实际工程中"一般直接计算滑坡的剩余下滑力"第= 块%图!$!$!&"&剩余下滑力
为’
:= ) :=-!(+(?*=? -*==467#= -$=7= %!-%!&
( ).53%=-! -%=&-387%=-! -%=&467#= %!-%%&
式中 (4 表示滑坡推力安全系数"一般取!"(*$! "%*$取值的大小取决于工程的重要性
和对滑坡认识的准确程度等因素$对于甲级建筑物取! "%*"乙级建筑物取!"!*"丙级建
筑物取!"(*$对滑坡认识程度较高的"可考虑取低值#对滑坡认识程度较差的"可取高 值#对于岩质边坡宜取高值$
计算滑坡推力的具体作法是’从上而下逐块计算各块的剩余下滑力"逐块下传"一直 传到支挡结构或滑体的最后一块"就可得出支挡结构所承受的滑坡推力或滑坡的最终推 力$在计算过程中"当任何一块的剩余下滑力为零或负值时"说明该块以前部分不存在滑 坡推力"应从下一块重新开始累计$
当最后一块滑体的剩余下滑力为负值或零时"表示整个滑体是稳定的#如为正值"则 为不稳定"应按此设计支挡结构$当滑体具有多层滑面%带&时"应取推力最大的面%带&确 定推力$
由于滑坡实际上不是一个平面问题"因此在判断滑坡的稳定性和计算支挡结构所承 受的滑坡推力时"一般应选择几个平行于滑动方向并具有代表性的断面"一般不得少于二 个"其中一个应是滑动速度最快的主滑断面$根据不同断面的推力设计相应的支挡结构$
(例!$!)#某电站主厂房滑坡系残积!坡积土层沿下伏基岩%粘土岩&表面风化层滑 动"滑坡剖面如图!$!$!*所示$经工程地质勘察"取 ?4’!"!("# ’!1)"$’!!"#BC6 " 求最终推力$
图!$!$!*#某滑坡剖面图
(解)按式%!$%!&和%!$%%&计算:7$
计算结果详见表!$%%"得最终推力:!#’!#%"&BD*2$
)!1)
边坡工程设计施工新技术与质量检测验收实务全书
从滑坡推力的计算中!可见滑面上岩土抗剪强度指标的正确选用是个关键问题!滑坡
绝大多数"约-(/以上#发生在堆积层中!基本上以土为主!而岩层滑坡多沿软弱结构面 滑动!后者风化破碎!其性质也接近于土$因此用来测定抗剪强度指标的试样以土为主! 只在个别情况下才做岩石试验$试验方法主要有野外原位大型剪切试验和室内三轴压缩 或应变式直剪试验!但总的要求是试验条件力求能模拟滑坡滑动时的实际受力情况$滑 面"带#上的岩土如为不能进行室内试验的非均质土"如角砾土#%岩土接触面或岩体中的 软弱结构面!宜进行原位大型直剪&如为有裂隙的粘性土!宜采用三轴快剪$按滑面的情 况来说!当滑面明显或埋藏浅时!宜采用野外或室内的滑面重合剪"要求试样沿滑动方向 剪切#&当滑面不明显或埋藏深时!则采用室内重塑土多次剪以求得残余抗剪强度"这是鉴 于滑坡已经或曾多次发生滑动!滑面上的土已经或曾达到残余抗剪强度#!试验方法宜采 用不排水剪&如滑面处土的含水量较大或估计今后还会有浸水可能时!用浸水饱和快剪$ 至于抗剪强度的取值!过去一般多采用峰值强度!但实践表明!它往往偏于不安全!而采用 残余强度!则又过于保守$因此!宜根据工程实际情况!在峰值与残余值之间选取$
表!$!$#
滑块 滑块面 *7
*74
*77
*77467( 77
@777
(4*74 :7
+:7$!
,
!!"1# %&-",##)#(0!#,"(%(,"( +,"(
%", #*"! !*!"( &1"- !"(#
*("&
1
!+"%& #&#",#-)%(0%!,"(%+*"( 1+"(
#"# &#"( %#-"(!+("& !"((
!+("&
-
!%",1 %,1"%#-)&(0!,,"-%!&"( +-"+
%"- #,"+ !-+"(%&-"% ("-(
%%&"#
!(
,"#1 !+!"&%+)#(0 ,%"! !&&"( &+"1
%"- #,"+ ,-"# %!-"% ("-!
!--"*
!!
&"(( 1,"! !&)&(0 %%"( 1&"% %,"&
%"( %+"( %&"% !,("# ("-+
!+#"*
顺序 积"2%# "BD# %7
"BD# "BD#
"BD#
"2# "BD# "BD# "BD# +
"BD’2#
!
#",& 1#"( !!)%(0 !+"# 1!"* %+"*
%"1 #+"* !,"- $&*"!!"(%
(
%
#"*( ,1"! !+) %!"* ,* "! %&"&
%"* #%"* %#"+ $##"#!"(*
(
#
&",( -,", #%) *!", 1%"1 %,"(
%"( %+"( *,"( &"( ("-!
#"+
&
*"!, !!!"#!-)#(0 #,"% !(*"( #&"!
!"+ %("1 &!"( $!("#("-#
(
*
,"(! !&-"+ !() %+"( !&,"( &,"1
!"- %&", %1"+ $&#"(!"(*
(
+
1"(( !+-"!%#)%(0 +,"( !**"% *("%
%"( %+"( ,#", $%"* !"(&
(
!%
#"+& ,-"+ 1) !!"% ,-"( %*",
!"* !-"* !%"# !#("+ !"(*
!#,"!
!#
,"## !+("* %*) +,"1 !&*"% &,"(
%"* #%"* ,&"1 !#%"&
七!滑坡的预防
滑坡会造成严重的工程事故!因此!在建设中应对滑坡采取预防为主的方针!在勘察%
设计%施工和使用中都要采取必要的措施!预防滑坡的发生$经验表明(对滑坡采取简易
第一篇#边坡工程设计施工技术总论
*!-*
的预防措施!其所费人力"物力往往要比发生滑坡后再设法整治节省很多#
在建设场区内!对于有可能形成滑坡的地段!必须注意以下几个方面!并采取可靠的 预防措施!防止滑坡发生#
!"加强勘察工作!对拟建场地$包括边坡%的稳定性进行认真的分析和评价!特别是要 注意到由于工程活动对场地工程地质条件的改变以及对边坡稳定性所引起的影响#厂址 和线路一定要选在边坡稳定的地段#
对具备滑坡形成条件的或存在有古"老滑坡的地段!如估计到它们确有可能因施工或 其它原因而触发滑坡!则一般不应选作建筑场地&否则!应采取必要的措施加以预防#如 贸然上去!势必会造成不良甚至严重后果#
%"在生产建设过程中!应尽量避免造成触发滑坡的外因#如总图布置时应尽量利用 原有的地形条件!因地制宜!避免大挖大填!以致破坏场地及边坡的稳定性#
在施工过程中应尽可能先做好室外排水和边坡的保护工程#
’治山先治水(!为了预防滑坡!应认真做好排水工作$包括地表水和地下水%#应尽可 能保持场地的自然排水系统!并进行必要的整修和加固!防止渗水#截水沟的坡度要大于 天然边坡的坡度!并做好防渗处理!加强维护和勤于疏通#地表的天然植被要尽可能保护 和培育&对于疏松或有大量
展开阅读全文