收藏 分销(赏)

毕业设计(雨辰)风机状态测试系统的总体设计【全套图纸】.doc

上传人:人****来 文档编号:4642073 上传时间:2024-10-08 格式:DOC 页数:8 大小:116.50KB
下载 相关 举报
毕业设计(雨辰)风机状态测试系统的总体设计【全套图纸】.doc_第1页
第1页 / 共8页
毕业设计(雨辰)风机状态测试系统的总体设计【全套图纸】.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述
摘要 风机状态测控系统是在风机运转的过程中,实现风机性能基本参数的采集、分析、计算风机性能参数并绘制性能曲线(流量——全压曲线、流量——功率曲线、流量——效率曲线)并通过采集与处理的信号信息对风机的转速的变频调速控制的过程。风机性能试验对于成品的检验和新产品的设计开发都至关重要,特别是对于大型、特型风机以及单件、小批量而且气流特性有特殊要求的情况,性能试验尤为重要。目前,我国风机性能检测大多以手工为主,存在试验手段落后,劳动量大和测试结果不准确等缺点。采用先进的虚拟仪器技术,将传感技术、仪器技术和测试技术结合起来,进行风机性能参数的自动检测,试验数据的自动处理和性能曲线的自动绘制是本文研究的重点。 本文采用虚拟仪器技术,进行了风机性能试验自动测试系统的硬件及软件设计。硬件上在风机机械结构基础上采用压差传感器、压力传感器和扭矩传感器检测各试验数据,实现了试验数据的自动采集;利用变频调速技术控制变频调速器输出信号的频率,实现了风机转速的自动调节。软件上在Labview虚拟仪器开发平台上,采用模块化设计方法,实现了采集信号的实时显示、控制信号的准确输出、试验数据的正确处理及应用最小二乘法对性能参数进行拟合从而实现了性能曲线的自动绘制。整个系统具有界面友好、操作方便、功能齐全等优点,试验结果表明研制基于虚拟仪器的风机性能自动测试系统,增加了试验过程的稳定性,避免了人为的读数误差、计算误差以及相关数据不能同时记录所引起的试验结果的偏差.提高了测试精度和试验效率。可广泛应用于科研院所和风机生产厂家,具有较高的推广与应用价值。 关键词:风机性能;风机测试;风机控制;虚拟仪器;数据采集;Labview。 目录 摘要(中文)-------------------------------------------------------------------------------------Ⅰ (英文)--------------------------------------------------------------------------------------Ⅱ 第一章 概述------------------------------------------------------------------------------------1 1.1 风机简述--------------------------------------------------------------------------------1 1.2 风机测试系统的发展-----------------------------------------------------------------1 1.3 基于虚拟仪器的风机测试系统-----------------------------------------------------1 第二章 系统总体方案的设计------------------------------------------------------------3 2.1 风机性能测试方法--------------------------------------------------------------------3 2.2 虚拟仪器技术及其应用--------------------------------------------------------------5 2.3 风机测试系统的总体方案-----------------------------------------------------------5 第三章 风机硬件系统的设计------------------------------------------------------------7 3.1 风机机械硬件总体设计--------------------------------------------------------------7 3.2 机械结构设计计算--------------------------------------------------------------------7 3.3 风机转速调节装置的设计--------------------------------------18 3.4 风机测试传感器的设计选用------------------------------------20 3.5 风机测试系统数据采集卡--------------------------------------23 第四章 系统软件的设计-----------------------------------------------------------------25 4.1 虚拟仪器的硬件系统---------------------------------------------------------------25 4.2 虚拟仪器的软件系统---------------------------------------------------------------26 4.3 Labview简介-------------------------------------------------------------------------26 4.4 测试系统主界面的设计------------------------------------------------------------27 第五章 结束语------------------------------------------------------------------------------29 参考文献------------------------------------------------------------------------------------------30 第一章 概述 随着机械技术、微电子技术和信息技术的飞速发展,机械技术、微电子技术和信息技术的相互渗透也越来越快。要实现系统或产品的短、小、轻、薄和智能化,达到节省能源、节省材料、实现多功能、高性能和高可靠性的目的,机械与电子结合就成为了现代科技发展的趋势。对于风机的自动测控系统就是一个机械电子结合的范例。 1.1风机简述 风机是把原动机的机械能转变为气体能量的一种机械,它是用来提高气体压力,并输送气体的机械,是透平机械中的一种[1]。 风机按工作压力提高的程度来分,可以分为四种: 1) 风扇(<100Pa) 2) 通风机(0.1-15kPa) 3) 鼓风机(15-250kPa) 4) 压缩机(>250kPa或压比>3.5) 压缩机的压比又称压缩比,是压缩机出口与进口处气体压力之比。 风机使用面广,种类繁多,在工业生产中利用风机产生的气流做介质进行工作,可实现清选、分离、加热烘干、物料输送、通风换气、除尘降温等多种工作[2]。 1.2风机测试系统的发展 由于风机理论至今仍欠完善,所以风机性能参数的获取主要依赖于性能试验。风机性能试验是在风机转速不变的情况下,改变风机的流量,检测风机各性能参数,并绘制性能曲线的过程。目前,风机用户为了提高经济效益,在选择风饥时对它的各项性能指标提出了更为严格的要求.如压力,流量,转速,功率.噪声,可靠性等[3]。同时,风机生产厂家为了提高产品的竞争能力,在努力改进气动设计,提高机械加工的同时,也对风机性能试验的研究和开发给予了高度的重视。并且在电气拖动设备的运行过程中, 经常遇到这样的问题, 即拖动设备的负荷变化较大, 而动力源电机的转速却不变, 也就是说输出功率的变化不能随负荷的变化而变化。在实际中这种“大马拉小车”的现象较为普遍, 浪费能源。在许多生产过程中采用变频调速实现电动机的变速运行, 不仅可以满足生产的需要, 而且还能降低电能消耗, 延长设备的使用寿命。鼓风机系统采用变频调速, 并应用PLC或者单片机构成风压闭环自动控系统, 实现了电机负荷的变化变速运行自动调节风量, 即满足了生产需要, 又达到了节能降耗的目的[1]。由此可见,风机性能测控系统对于成品的检验和新产品的设计开发都至关重要,特别是对于大型、特型风机以及单件、小批量而且气流特性有特殊要求的情况,性能试验尤为重要。虚拟仪器(VI)技术是目前测控领域中最为流行的技术之一,它利用I/O接口设备完成信号的采集、测量与调理,利用计算机软件实现信号数据的运算、分析和处理,利用显示器丰富的显示功能来多形式地表达和输出检测结果,在此基础上,构成一个具有完整测试功能的计算机仪器系统,即虚拟仪器。虚拟仪器具有传统仪器的基本功能,同时又能根据用户的要求随时进行定义,实现多种多样的应用需求,具有扩展灵活、界面友好、操作简便、性价比高等特点,目前,虚拟仪器技术在许多领域都得到广泛应用[4]。 1.3基于虚拟仪器的风机测试系统 现代科学技术的进步以计算机技术的进步为代表,不断更新的计算机技术从各个层面上影响、引导各行各业的技术更新。基于计算机技术的虚拟仪器以不可逆转的力量推动着测控技术的革命。虚拟仪器系统的概念不仅推进了以仪器为基础的测控系统的改造,同时也影响了以数据采集为主的测试系统构造方法的进化,过去独立分散、互不相干的许多领域,在虚拟仪器系统的概念下,正在逐渐靠拢、相互影响,并形成新的技术方法和技术规范。虚拟仪器技术能充分利用计算机独具的运算、存储、回放、调用、显示及文件管理等智能化功能,同时把传统仪器的专业化功能和面板控件软件化,使之与计算机融为一体,构成一台从外观到功能都完全与传统硬件仪器相同,同时又充分享用计算机智能资源的全新仪器系统。应用虚拟仪器技术,可以用较少的资金、较少的系统开发和维护费用,用比过去更少的时间开发出功能更强、质量更可靠的产品和系统[5][6]。所以,为提高风机性能试验测试系统的性能,并考虑到风机生产厂家及科研院所的实际需求,本课题采用在现有风机性能试验台的基础上利用计算机技术、电子技术、仪器技术的结合(即虚拟仪器),设计一种具有如下特点的计算机辅助风机性能自动测试与分析系统。 (1)自动采集风机性能试验数据,且各项参数指标达到国家规定标准。 (2)自动控制风机转速。 (3)自动进行数据处理,且实现数据的存储、打印、查询等功能。 (4)自动绘制风机性能曲线。 (5)系统界面友好,操作方便,便于用户使用。 论文的主要任务是以虚拟仪器为设计目标,选用适合的测试手段与测试方法,进行风机性能试验台的软硬件设计,实现试验数据自动采集与数据处理并最终生成风机性能曲线。 3.3风机转速调节装置的设计 3.3.1总体设计 在风机测试过程中,要求风机的转速不变。但是在实际应用当中,风机需要有不同的转速,当然也是为了节能方面的考虑。因此,对风机的交流异步电机的调速就是对风机的调速过程。随着新型电力电子器件的发展,交流变频调速技术已经崛起,它几乎和计算机控制一样,成为了现代交流传动调速技术领域的主要标志之一。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐[11]。变频器调节风机转速原理如图3-10。 图3-10风机转速调节装置流程图 3.3.2风机变频调速控制设计 3.3.2.1 交流变频调速的优异特性   (1) 调速时平滑性好,效率高。低速时,特性静关率较高,相对稳定性好。   (2) 调速范围较大,精度高。   (3) 起动电流低,对系统及电网无冲击,节电效果明显。   (4) 变频器体积小,便于安装、调试、维修简便。   (5) 易于实现过程自动化。   (6) 必须有专用的变频电源|稳压器,目前造价较高。   (7) 在恒转矩调速时,低速段电动机的过载能力大为降低。 3.3.2.2变频调速原理[12] 变速调速也称为变频调速系统,它主要由变频器和控制器两大部分组成。变频调速的基本原理是根据电动机转速与输入频率成比例的关系,通过改变供给电动机三相电源的频率值来达到改变电动机转速的目的。 1、变频器 变频器的作用是将所接收的三相电源(如380V,50Hz)转换为频率可调节的三相电源。变频器根据其变频的原理分为直接变频和间接变频。直接变频为交——交变频;间接变频为交——直——交变频。间接变频是指将交流经整流器后变为直流,然后再经逆变器调制为频率可调的交流电。 交——直——交频器由顺变器、中间滤波器和逆变器三部分组成。顺变器就是整流器,它是一个晶闸管感想一桥式电路,其作用为将定压定频的交流电变换为可调直流电,然后作为逆变器的直流供电电源;中间滤波器由电抗器或电容组成,其作用是对整流后的电压或电流进行滤波;逆变器也是三相桥式整流电路,但它的作用与顺变器相反,综将直流电变换(调制)为可调频率的交流电,它是变频器的主要部分。 2、控制器 控制器是根据变频调速的不同方式产生相应的控制信号,控制逆变器中各功率开关元件的工作状态,使逆变器输出预定频率和预定电压的交流电源。控制器有二种控制方式:一种是以各种集成电路构成的模拟控制方式;另一种是以单片机、微处理器构成的数字控制方式。市场销售的微电脑变频器,就是使用单片微机或微处理器为控制核心的变频器。 决定功率开关器件(如晶闸管)动作顺序和时间分配规律的控制方法称为脉宽调制(PWM)方法。用这种方法通过改变矩形脉冲的宽度可以控制逆变器输出交流基波电压的幅值;通过改变调制矩形脉冲波形的频率(或周期)可以控制交流基波电压的频率。控制器输出一组等幅而脉冲宽度随时间按正弦规律变化的矩形脉冲,用此脉冲电压去触发逆变器中的功率开关器件,起到了功率放大作用。由于各个矩形脉冲波下的面积接近于正弦波下的面积,因此,逆变器的输出电压就接近于正弦波,这样就能满足变频调速对电压与频率协调控制的要求。 3.3.2.3变频器控制 在此选择交流变频器型号为:RNB3000 电机为Y100L2-4 主回路端子接线图、控制回路接线图如图3-11、各端子说明如表3-1。 图3-11 变频器接线说明 表3-1变频器端子说明 3.4风机测试传感器的设计选用 本系统采用的传感器包括压差传感器、压力传感器和扭矩传感器。压差传感器主要用于检测流量,压力传感器主要用于检测静压,扭矩传感器主要用于检测功率信号。 3.4.1压差测量[13] 差压式流量计(以下简称DPF或流量计)是根据安装于管道中流量检测件产生的差压、已知的流体条件和检测件与管道的几何尺寸来测量流量的仪表。DPF由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件的型式对DPF分类,如孔扳流量计、文丘里管流量计及均速管流量计等。二次装置为各种机械、电子、机电一体式差压计,差压变送器和流量显示及计算仪表,它已发展为三化(系列化、通用化及标准化)程度很高的种类规格庞杂的一大类仪表。差压计既可用于测量流量参数,也可测量其他参数(如压力、物位、密度等)。 3.4.1.1压差测量工作原理 充满管道的流体,当它流经管道内的节流件时,如图3-12所示,流速将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当节流装置形式或管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的[14]。 图3-12压差测量工作原理 式(3-10) 式(3-11) 式中 qm--质量流量,kg/s;    qv--体积流量,m3/s;    C--流出系数;    ε--可膨胀性系数;    β--直径比,β=d/D;    d--工作条件下节流件的孔径,m;    D--工作条件下上游管道内径,m;    △P--差压,Pa;    Ρ1--上游流体密度,kg/m3。   由上式可见,流量为C、ε、d、ρ、△P、β 6个参数的函数,此6个参数可分为实测量[d,ρ,△P,β(D)]和统计量(C、ε)两类。 3.4.1.2风机压差测量方式 此测试系统采用法兰取压的标准板孔如图3-13。 图3-13标准板孔的法兰取压 3.4.1.3压差测量传感器 由以上论述看出,通过孔板的流体的流量与孔板两端的压力差的平方根成正比。本试验装置中,此压差信号由压差式变送器测量。压差式流量传感器是目前工业上技术最成熟、使用最多的一种,其使用量约占全部流量测量仪表的70-80%。他不仅可以用来显示,而且可以经压差变送器转换成统一的标准信号为20mA(或l-5V)以便送到单元组合仪表及计算机进行上业过程控制。差压式节流装置的特点是:结构简单,使用寿命长,适应能力强,几乎能测量各种工作状态(包括高温、高压)下。 本测试装置采用气压传感器C268、RANGE:+/-1000Pa。 3.4.2风机静压测量与传感器 压力传感器用来测量管道的静压。压力传感器的种类繁多,本系统采用电容式微压传感器不,其特点如下: (1)测量范围大。金属应变丝的极限一般为l%,而半导体应变片可达20%,电容传感器相对变化量大于100%。 (2)灵敏度高。如用比率变压器电桥可测出电容值,其相对变化量可达IE-7 (3)动态响应时间短。由于电容式传感器可动部分质量小,因此其固有频率很高,可月J几动态信号的测量。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服