收藏 分销(赏)

机械原理课程设计压床机构模板.doc

上传人:精*** 文档编号:4634742 上传时间:2024-10-08 格式:DOC 页数:28 大小:1.02MB
下载 相关 举报
机械原理课程设计压床机构模板.doc_第1页
第1页 / 共28页
机械原理课程设计压床机构模板.doc_第2页
第2页 / 共28页
机械原理课程设计压床机构模板.doc_第3页
第3页 / 共28页
机械原理课程设计压床机构模板.doc_第4页
第4页 / 共28页
机械原理课程设计压床机构模板.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、机械原理课程设计压床机构282020年4月19日文档仅供参考机械原理课程设计说明书 设计题目:学院:班级:设计者:学号:指导老师:目 录目 录2一、机构简介与设计数据31.1.机构简介31.2机构的动态静力分析31.3凸轮机构构设计31.4.设计数据4二、压床机构的设计52.1.传动方案设计52.1.1.基于摆杆的传动方案52.1.2.六杆机构A52.1.3.六杆机构B62.2.确定传动机构各杆的长度6三.传动机构运动分析83.1.速度分析83.2.加速度分析103.3. 机构动态静力分析113.4.基于soildworks环境下受力模拟分析:14四、凸轮机构设计17五、齿轮设计195.1.全

2、部原始数据195.2.设计方法及原理195.3.设计及计算过程19参考文献21一、机构简介与设计数据1.1.机构简介图示为压床机构简图,其中六杆机构为主体机构。图中电动机经联轴器带动三对齿轮将转速降低,然后带动曲柄1转动,再经六杆机构使滑块5克服工作阻力而运动。为了减少主轴的速度波动,在曲柄轴A 上装有大齿轮并起飞轮的作用。在曲柄轴的另一端装有油泵凸轮,驱动油泵向连杆机构的供油。(a)压床机构及传动系统1.2机构的动态静力分析 已知:各构件的重量G及其对质心轴的转动惯量Js(曲柄1和连杆4的重力和转动惯量(略去不计),阻力线图(图97)以及连杆机构设计和运动分析中所得的结果。要求:确定机构一个

3、位置的各运动副中的反作用力及加于曲柄上的平衡力矩。作图部分亦画在运动分析的图样上。1.3凸轮机构构设计已知:从动件冲程H,许用压力角推程角。,远休止角,回程角,从动件的运动规律见表9-5,凸轮与曲柄共轴。要求:按确定凸轮机构的基本尺寸求出理论廓线外凸曲线的最小曲率半径。选取滚子半径r,绘制凸轮实际廓线。以上内容作在2号图纸上1.4.设计数据设计内容连杆机构的设计及运动分析符号单位mm度mmr/min数据I50140220601201501/21/41001/21/2II60170260601201801/21/4901/21/2III70200310601202101/21/4901/21/2

4、连杆机构的动态静力分析及飞轮转动惯量的确定G2G3G5N1/3066044030040000.280.0851/30106072055070000.640.21/3016001040840110001.350.39凸轮机构设计aS0mm0161204080207518130387520901813542652075二、压床机构的设计2.1.传动方案设计2.1.1.基于摆杆的传动方案优点:结构紧凑,在点处,力的方向与速度方向相同,因此传动角,传动效果最好;满足急回运动要求;缺点:有死点,造成运动的不确定,需要加飞轮,用惯性经过;2.1.2.六杆机构A优点:能满足要求,以小的力获得很好的效果;缺点

5、:结构过于分散:2.1.3.六杆机构B优点:结构紧凑,满足急回运动要求;缺点: 机械本身不可避免的问题存在。综合分析:以上三个方案,各有千秋,为了保证传动的准确性,而且以满足要求为目的,我们选择方案三。2.2.确定传动机构各杆的长度已知: , ,,如右图所示,为处于两个极限位置时的状态。根据已知条件可得: 在三角形和中用余弦公式有:由上分析计算可得各杆长度分别为:三.传动机构运动分析项目数值单位3.1.速度分析已知: ,逆时针;大小 方向 铅垂 选取比例尺,作速度多边形如图所示;由图分析得:0.00418.71=0.07484m/s0.004121.5=0.486m/s0.00428.06=0

6、.11224m/s0.00420.7=0.0828m/s0.00414.36=0.05744m/s0.00469.32mm 0.27728m/s0.00414.03mm 0.05612m/s0.486/0.223185=2.178rad/s (顺时针)0.07484/0.1=0.7484rad/s (逆时针)0.05744/0.0375=1.532rad/s (顺时针) 速度分析图:项目数值2.1780.7481.532单位3.2.加速度分析10.47220.049285=5.405m/s2=2.17820.223185=1.059m/s2=0.74820.1=0.056m/s2 =1.532

7、20.0375=0.088m/s2 = anCD+ atCD= aB + atCB + anCB大小: ? ? ? 方向: ? CD CD BA BC CB选取比例尺a=0.04(m/s2)/mm,作加速度多边形图=0.04113.53=4.5412m/s2=0.04170.29=6.8116m/s2=0.0461.3=2.452 m/s2=0.04113.52=4.5408 m/s2aF = aE + anFE + atFE大小: ? ?方向: FE FE=0.04129.42=5.1768 m/s2=0.04120.97=4.8388m/s2=0.0485.15= 3.406m/s2=0.

8、04129.42= 5.1768m/s2=2.452/0.223185=10.986 m/s2 (逆时针)=4.5408/0.1=45.408 m/s2 (顺时针)项目数值5.405 4.5416.812 5.1774.839 3.406 10.986 45.408单位m/srad/s3.3. 机构动态静力分析G2 G3G5FrmaxJs2Js3方案I66044030040000.280.085单位 N Kg.m21各构件的惯性力,惯性力矩:=6604.839/9.8=325.892N(与方向相同)=4403.406/9.8=152.922N(与方向相反)=3005.177/9.8=158.4

9、80N(与方向相反)=4000/10=400N=0.2810.986=3.076N.m (顺时针)=0.08545.408=3.860N.m (逆时针)=3.076/325.892=9.439mm=3.860/152.922=25.242mm2计算各运动副的反作用力(1)分析构件5对构件5进行力的分析,选取比例尺作其受力图构件5力平衡: 则=-1047.44=-474.4N=474.4N(2)分析构件2、3单独对构件2分析:杆2对C点求力矩,可得:单独对构件3分析:杆3对C点求矩得:解得: 对杆组2、3进行分析:R43+Fg3+G3+Rt63+ Fg2+G2+Rt12+Rn12+Rn63=0大

10、小: ? ?方向: 选取比例尺F=10N/mm,作其受力图则 Rn12=10156.8=1568N; Rn63=1049.28=492.8N.(3)求作用在曲柄AB上的平衡力矩Mb:项目Fg2Fg3Fg5MI2MI3MbRn63Rt63数值325.89152.92158.483.083.8613.42492.8265.10单位 N N.m N项目Rn12Rt12R34R45R56R61数值1568.0058.71474.4474.4121.81569.1单位 N3.4.基于soildworks环境下受力模拟分析:装配体环境下的各零件受力分析Soild works为用户提供了初步的应力分析工具s

11、imulation,利用它能够帮助用户判断当前设计的零件是否能够承受实际工作环境下的载荷,它是COMOSWorks产品的一部分。Simulation利用设计分析向导为用户提供了一个易用、分析的设计分析方法。向导要求用户提供用于零件分析的信息,如材料、约束和载荷,这些信息代表了零件的实际应用情况。Simulation使用了当今最快的有限元分析方法快速有限元算法(FFE),它完全集成在windows环境中并与soild works软件无缝集成,被广泛应用于玩具、钟表、相机、机械制造、五金制品等设计之中。连杆受力情况Soild works中的simulation模块为我们提供了很好的零件应力分析途径

12、,经过对构件的设置约束点与负载,我们很容易得到每个零件在所给载荷后的应力分布情况。由于不知道该零件的具体材料,因此我选用了soild works中的合金钢材料,而且在轴棒两端加载了两个负载,经过soild works simulation运算后得到上图的应力分布图,经过不同色彩所对应的应力,我们能够清楚的看到各个应力的分布情况,虽然负载与理论计算的数据有偏差,不过对于我们了解零件的应力分布已经是足够了。四、凸轮机构设计符号h0010单位mm(0)方案11730552585有,即有。取,取。在推程过程中:由得当0 =550时,且00=0,即该过程为加速推程段,当0 =550时,且=22.50,

13、则有a=0,即该过程为减速推程段因此运动方程 0050100150200250300350400450500550S 00.3441.3492.9344.9697.2909.70912.03114.06615.65016.65517.000单位(mm)在回程阶段,由 得:当0=850时,且0042.50,则有a=42.50, 则有a=0,即该过程为加速回程段因此运动方程 80085090095010001050110011501200S1716.85516.42615.72714.78213.62312.28910.8269.2851250130013501400145015001550160

14、0165S7.7166.1744.7123.3782.2191.2730.5740.1450单位(mm)凸轮廓线如下:五、齿轮设计5.1.全部原始数据5.2.设计方法及原理考虑到负传动的重合度虽然略有增加,可是齿厚变薄,强度降低,磨损增大:正传动的重合度虽然略有降低,可是能够减小齿轮机构的尺寸,减轻齿轮的磨损程度,提高两轮的承载能力,并能够配凑中心距,因此优先考虑正传动。5.3.设计及计算过程1、 变位因数选择求标准中心距:选取,由此可得啮合角求变位因数之和:,然后在齿数组合为的齿轮封闭线上作直线,此直线所有的点均满足变位因数之和1.1044和中心距122.5mm的要求,因此,满足两齿根相等的

15、要求。 2、计算几何尺寸由可知,该传动为正传动,其几何尺寸计算如下:a.中心距变动系数:b.齿顶高变动系数:c.齿顶高: d.齿根高: e.齿全高: f.分度圆直径: g.齿顶圆直径: h.齿根圆直径: i.基圆直径: j.节圆直径: k.顶圆压力角: l.重合度: 满足重合度要求。m.分度圆齿厚: 参考文献1.孙恒,陈作模,葛文杰.机械原理【M】.7版.北京:高等教育出版社, .2.崔洪斌,陈曹维.AutoCAD实践教程.北京:高等教育出版社, .3.邓力,高飞.soild works 机械建模与工程实例分析,清华大学出版社. .4.soildworks公司,生信实维公司.soildworks高级零件和曲面建模.机械工业出版社. .5.上官林建,魏峥.soildworks三维建模及实例教程,北京大学出版社. .

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服