收藏 分销(赏)

人教七年级下册数学期末学业水平卷及答案.doc

上传人:丰**** 文档编号:4621222 上传时间:2024-10-08 格式:DOC 页数:25 大小:748.04KB
下载 相关 举报
人教七年级下册数学期末学业水平卷及答案.doc_第1页
第1页 / 共25页
人教七年级下册数学期末学业水平卷及答案.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述
人教七年级下册数学期末学业水平卷及答案 一、选择题 1.“49的平方根是”的表达式正确的是() A. B. C. D. 2.下列运动属于平移的是( ) A.汽车在平直的马路上行驶 B.吹肥皂泡时小气泡变成大气泡 C.铅球被抛出 D.红旗随风飘扬 3.下列各点中,在第四象限的是( ) A. B. C. D. 4.下列句子中,属于命题的是( ) ①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线. A.①④ B.①②④ C.①②③ D.②③ 5.如果,直线,,则等于( ) A. B. C. D. 6.下列说法正确的是(  ) A.a2的正平方根是a B. C.﹣1的n次方根是1 D.一定是负数 7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC、AC分别交于点D、点E,直尺的另一边过A点且与三角尺的直角边BC交于点F,若∠CAF=42°,则∠CDE度数为( ) A.62° B.48° C.58° D.72° 8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( ) A.(2 ,1) B.(-1,-1) C.(﹣2,0) D.(2,0) 九、填空题 9.已知=8,则x的值是________________. 十、填空题 10.已知点在第四象限,,则点A关于y轴对称的坐标是__________. 十一、填空题 11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°. 十二、填空题 12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______. 十三、填空题 13.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__. 十四、填空题 14.将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是___ 十五、填空题 15.若点P在轴上,则点P的坐标为____. 十六、填空题 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中x的值: (1) (2) 十九、解答题 19.阅读并完成下列的推理过程. 如图,在四边形ABCD中,E、F分别在线段AB、AD上,连结ED、EF,已知∠AFE=∠CDF,∠BCD+∠DEF=180°.证明BC∥DE; 证明:∵∠AFE=∠CDF(已知) ∴EF∥CD (    ) ∴∠DEF=∠CDE(    ) ∵∠BCD+∠DEF=180°(    ) ∴   (    ) ∴BC∥DE(    ) 二十、解答题 20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹): (I)在方格纸内将三角形经过一次平移后得到三角形,图中标出了点的对应点,画出三角形; (2)过点画线段使且; (3)图中与的关系是______; (4)点在线段上,,点是直线上一动点线段的最小值为______. 二十一、解答题 21.已知:是的整数部分,是的小数部分. 求: (1),值 (2)的平方根. 二十二、解答题 22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1). (1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________; (2)迁移应用: 请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形. ①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图. ②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小. 二十三、解答题 23.已知,AB∥CD,点E为射线FG上一点. (1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED=   . (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论; (3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数. 二十四、解答题 24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°. (1)求证:EF∥MN; (2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数; (3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式. 二十五、解答题 25.已知,,点为射线上一点. (1)如图1,写出、、之间的数量关系并证明; (2)如图2,当点在延长线上时,求证:; (3)如图3,平分,交于点,交于点,且:,,,求的度数. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据平方根的表示方法,即可得到答案. 【详解】 解:“49的平方根是”表示为:. 故选A. 【点睛】 本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键. 2.A 【分析】 根据平移的定义,对选项进行一一分析,排除错误答案. 【详解】 解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合; B、吹肥皂泡时小气泡变成大气泡,不属于平移 解析:A 【分析】 根据平移的定义,对选项进行一一分析,排除错误答案. 【详解】 解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合; B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合; C、铅球被抛出是旋转与平移组合,故C选项不符合; D、随风摆动的红旗,不属于平移,故D选项不符合. 故选:A. 【点睛】 此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.B 【分析】 根据第四象限的点的横坐标是正数,纵坐标是负数解答. 【详解】 解:A、(3,0)在x轴上,不合题意; B、(2,-5)在第四象限,符合题意; C、(-5,-2)在第三象限,不合题意; D、(-2,3),在第二象限,不合题意. 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可. 【详解】 解: ①三角形的内角和等于180°,是三角形内角和定理,是命题; ②对顶角相等,是对顶角的性质,是命题; ③过一点作已知直线的垂线,是作图,不是命题; ④两点确定一条直线,是直线的性质,是命题, 综上所述,属于命题是①②④. 故选:B. 【点睛】 此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断. 5.B 【分析】 先求∠DFE的度数,再利用平角的定义计算求解即可. 【详解】 ∵AB∥CD, ∴∠DFE=∠A=65°, ∴∠EFC=180°-∠DFE =115°, 故选B. 【点睛】 本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.D 【分析】 根据平方根、算术平方根、立方根的定义判断A、B、D,根据乘方运算法则判断C即可. 【详解】 A:a2的平方根是,当时,a2的正平方根是a,错误; B:,错误; C:当n是偶数时, ;当n时奇数时,,错误; D:∵ ,∴一定是负数,正确 【点睛】 本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 7.B 【分析】 先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE. 【详解】 解:∵DE∥AF,∠CAF=42°, ∴∠CED=∠CAF=42°, ∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°, ∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°, 故选:B. 【点睛】 本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键. 8.B 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1); 解析:B 【分析】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解. 【详解】 根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,由题意知: 第一次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为 ,此时在BC边相遇,即第一次相遇点为(-1,1); 第二次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在DE边相遇,即第二次相遇点为(-1,-1); 第三次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在A点相遇,即第三次相遇点为(2,0); 此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵ , 故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1) 故选:B 【点睛】 本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点. 九、填空题 9.65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键 解析:65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键. 十、填空题 10.【分析】 由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】 解:因为在第四象限,则,所以, 又因为关于y轴对称,x值相反,y值不变, 解析: 【分析】 由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解. 【详解】 解:因为在第四象限,则,所以, 又因为关于y轴对称,x值相反,y值不变, 所以点A关于y轴对称点坐标为. 故答案为. 【点睛】 本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律. 十一、填空题 11.10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=1 解析:10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°, ∵AD是角平分线, ∴∠BAD=∠BAC=×60°=30°, ∵AE是高, ∴∠BAE=90°-∠B=90°-50°=40°, ∴∠DAE=∠BAE-∠BAD=40°-30°=10°. 故答案为:10. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 十二、填空题 12.【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三 解析: 【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键. 十三、填空题 13.36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形ABCD为长方形, ∴AD//BC, ∴∠DEF= 解析:36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形ABCD为长方形, ∴AD//BC, ∴∠DEF=∠EFB=72°, 又由折叠的性质可得∠D′EF=∠DEF=72°, ∴∠AED′=180°﹣72°﹣72°=36°, 故答案为:36°. 【点睛】 本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键. 十四、填空题 14.【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 解析: 【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算. 【详解】 (20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数, ∵,即1,,,中第三个数 :, ∴的相反数为 故答案为. 【点睛】 此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键. 十五、填空题 15.(4,0). 【分析】 根据x轴上点的纵坐标为0列方程求出m的值,再求解即可. 【详解】 ∵点P(m+3,m-1)在x轴上, ∴m-1=0, 解得m=1, 所以,m+3=1+3=4, 所以,点P的坐 解析:(4,0). 【分析】 根据x轴上点的纵坐标为0列方程求出m的值,再求解即可. 【详解】 ∵点P(m+3,m-1)在x轴上, ∴m-1=0, 解得m=1, 所以,m+3=1+3=4, 所以,点P的坐标为(4,0). 故答案为:(4,0). 【点睛】 本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键. 十六、填空题 16.(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4 解析:(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…, 【详解】 解:由题意,粒子运动到点(3,0)时经过了15秒, 设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an, 则a1=2,a2=6,a3=12,a4=20,…, a2-a1=2×2, a3-a2=2×3, a4-a3=2×4, …, an-an-1=2n, 各式相加得: an-a1=2(2+3+4+…+n)=n2+n-2, ∴an=n(n+1). ∵44×45=1980,故运动了1980秒时它到点A44(44,44); 又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动. 故达到A44(44,44)时向左运动34秒到达点(10,44), 即运动了2014秒.所求点应为(10,44). 故答案为:(10,44). 故答案为:15,(10,44). 【点睛】 本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键. 十七、解答题 17.(1)-5;(2) 【解析】 【分析】 (1)根据绝对值、乘方的意义和立方根的定义进行计算即可; (2)先根据平方根和立方根的定义化简各数,进而即可得出答案. 【详解】 (1)原式=; (2)原式= 解析:(1)-5;(2) 【解析】 【分析】 (1)根据绝对值、乘方的意义和立方根的定义进行计算即可; (2)先根据平方根和立方根的定义化简各数,进而即可得出答案. 【详解】 (1)原式=; (2)原式= -6+2+1+=. 故答案为:(1)-5;(2) . 【点睛】 本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义. 十八、解答题 18.(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴. 解析:(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴. 【点睛】 本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键. 十九、解答题 19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行. 【分析】 根据平行线的性质与判定填空即可 【详解】 证明:∵∠AFE=∠CD 解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行. 【分析】 根据平行线的性质与判定填空即可 【详解】 证明:∵∠AFE=∠CDF(已知) ∴EF∥CD (同位角相等,两直线平行) ∴∠DEF=∠CDE( 两直线平行,内错角相等) ∵∠BCD+∠DEF=180°(已知) ∴∠BCD+∠CDE=180°( 等量代换) ∴BC∥DE( 同旁内角互补,两直线平行) 故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行 【点睛】 本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 二十、解答题 20.(1)见解析;(2)见解析;(3),AD∥;(4) 【分析】 (1)根据平移的性质,按要求作图即可; (2)根据过点A画线段AD∥BC,AD=BC,即可; (3)由平移的性质可得,∥BC,,从而可以 解析:(1)见解析;(2)见解析;(3),AD∥;(4) 【分析】 (1)根据平移的性质,按要求作图即可; (2)根据过点A画线段AD∥BC,AD=BC,即可; (3)由平移的性质可得,∥BC,,从而可以得到,AD∥; (4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短,由此利用三角形面积公式求解即可. 【详解】 解:(1)如图所示,即为所求: (2)如图所示,即为所求: (3)平移的性质可得 ,∥BC,由AD=BC,AD∥BC,从而可以得到,AD∥; 故答案为:,AD∥; (4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短, 如图所示:∵AD∥BC, ∴ , ∴, ∴, ∴点H是直线CE上一动点线段BH的最小值为. 故答案为:. 【点睛】 本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题 解析:(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键. 二十二、解答题 22.(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ② 解析:(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小. 【详解】 解:设正方形边长为a, ∵a2=2, ∴a=, 故答案为:,; (2)解:①裁剪后拼得的大正方形如图所示: ②设拼成的大正方形的边长为b, ∴b2=5, ∴b=±, 在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方, ∴比较大小:. 【点睛】 本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键. 二十三、解答题 23.(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线 解析:(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求. 【详解】 解:(1)过作, , , ,, , 故答案为:; (2). 理由如下: 过作, , , ,, ,, ; (3), 设,则, ,, 又,, , 平分, , , , 即,解得, , . 【点睛】 本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键. 二十四、解答题 24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K 解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【分析】 (1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行; (2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解; (3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解. 【详解】 解:(1)∵AB⊥AK ∴∠BAC=90° ∴∠MAB+∠KAN=90° ∵∠MAB+∠KCF=90° ∴∠KAN=∠KCF ∴EF∥MN (2)设∠KAN=∠KCF=α 则∠BAN=∠BAC+∠KAN=90°+α ∠KCB=180°-∠KCF=180°-α ∵AG平分∠NAB,CG平分∠ECK ∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α ∴∠FCG=∠KCG+∠KCF=90°+α 过点G作GH∥EF ∴∠HGC=∠FCG=90°+α 又∵MN∥EF ∴MN∥GH ∴∠HGA=∠GAN=45°+α ∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45° (3)①当CP交射线AQ于点T ∵ ∴ 又∵ ∴ 由(1)可得:EF∥MN ∴ ∵ ∴ ∵, ∴ ∴ 即∠FCP+2∠ACP=180° ②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G ,由EF∥MN得 ∴ 又∵,, ∴ ∵, ∴ ∴ ∴ 由①可得 ∴ ∴ 综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°. 【点睛】 本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键. 二十五、解答题 25.(1),证明见解析;(2)证明见解析;(3). 【分析】 (1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)设CD与AE交于点H 解析:(1),证明见解析;(2)证明见解析;(3). 【分析】 (1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG; (3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数. 【详解】 解:(1)∠AED=∠EAF+∠EDG.理由:如图1, 过E作EH∥AB, ∵AB∥CD, ∴AB∥CD∥EH, ∴∠EAF=∠AEH,∠EDG=∠DEH, ∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)证明:如图2,设CD与AE交于点H, ∵AB∥CD, ∴∠EAF=∠EHG, ∵∠EHG是△DEH的外角, ∴∠EHG=∠AED+∠EDG, ∴∠EAF=∠AED+∠EDG; (3)∵AI平分∠BAE, ∴可设∠EAI=∠BAI=α,则∠BAE=2α, 如图3,∵AB∥CD, ∴∠CHE=∠BAE=2α, ∵∠AED=20°,∠I=30°,∠DKE=∠AKI, ∴∠EDI=α+30°-20°=α+10°, 又∵∠EDI:∠CDI=2:1, ∴∠CDI=∠EDK=α+5°, ∵∠CHE是△DEH的外角, ∴∠CHE=∠EDH+∠DEK, 即2α=α+5°+α+10°+20°, 解得α=70°, ∴∠EDK=70°+10°=80°, ∴△DEK中,∠EKD=180°-80°-20°=80°. 【点睛】 本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服