收藏 分销(赏)

电力电子技术在电力系统中的运用.docx

上传人:二*** 文档编号:4590832 上传时间:2024-09-30 格式:DOCX 页数:8 大小:25KB
下载 相关 举报
电力电子技术在电力系统中的运用.docx_第1页
第1页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、电力电子技术在电力系统中的应用北极星电力网技术频道 作者: 2009-5-5 14:05:45(阅2185次)关键词: 电力电子发电环节输配电 电力电子技术是电工技术中的新技术,是电力与电子技术(强电和弱电技术)的融合,已在国民经济中发挥着庞大作用,对未来输电系统性能将产生庞大影响。目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。一、发电环节 电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。(二)大型发电机的静止励磁控制。静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力

2、系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调剂,给先进的控制规律提供了充分发挥作用并产生良好控制成效的有利条件。(二)水力、风力发电机的变速恒频励磁。水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(特别是抽水蓄能机组),机组的最佳转速亦随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。(三)发电厂风机水泵的变频调速。发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设

3、备总耗电量的65%,且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并有完整的系列产品,但具备(四)太阳能发电控制系统。开发利用无穷尽的干净新能源太阳能,是调整未来能源结构的一项重要战略措施。大功率太阳能发电,无论是独立系统还是并网系统,通常需要将太阳能电池阵列发出的直流电转换为交流电,所以具有最大功率跟踪功能的逆变器成为系统的核心。日本实施的阳光计划以34kW的户用并网发电系统为主,我国实施的送电到乡工程则以1015kW的独立系统居多,而大型系统有在美国加州的西门子太阳能发电厂(7.2MW)等。二、输电环节(一

4、)柔性交流输电技术(FACTS)交流输电或电网的运行性能。已应用的FACTS控制器有静止无功补偿器(SVC)、静止调相机(STATCON)、静止快速励磁器(PSS)、串联补偿器(SSSC)等。近年来,柔性交流输电技术已经在美国、日本、瑞典、巴西等国重要的超高压输电工程中得到应用。国内也对FACTS进行了深入的研究和开发,(二)高压直流输电技术(HVDC)流站可以搬迁,可以使中型的直流输电工程在较短的输送距离也具有竞争力。此外,可关断器件组成的换流器,由于采用了可关断的电力电子器件,可避免换相失败,对受端系统的容量没有要求,故可用于向孤立小系统(海上石油平台、海岛) 供电,今后还可用于城市配电系

5、统,并用于接入。1天生桥广州直流输电工程(2001年)500kV,1800MW,980km2三峡常州直流输电工程(2003年)500kV,3000MW,890km3三峡广州直流输电工程(2004年)500kV,3000MW,962km近年来,直流输电技术又有新的发展,轻型直流输电采用IGBT等可关断电力电子器件组成换流器,应用脉宽调制技术进行无源逆变,解决了用直流输电向无交流电源的负荷点送电的问题。同时大幅度简化设备,降低造价。世界上第一个采用IGBT构成电压源换流器的轻型直流输电工业性试验工程于1997年投入运行。 (三)静止无功补偿器(SVC) SVC是用以晶闸管为基本元件的固态开关替代了

6、电气开关,实现快速、频繁地以控制电抗器和电容器的方式改变输电系统的导纳。SVC可以有不同的回路结构,按控制的对象及控制的方式不同分别称之为晶闸管投切电容器(TSC)、晶闸管投切电抗器(TSR)或晶闸管控制电抗器(TCR)。我国输电系三、配电环节是快速发展的姊妹型新式电力电子技术。采用FACTS的核心是加强交流输电系统的可控性和增大其电力传输能力;发展CP的目的是在配电系统中加强供电的可靠性和提高供电质量。CP和FACTS的共同基础技术是电力电子技术,各自的控制器在结构和功能上也相同,其差别仅是额定电气值不同四、其他应用(一)同步开断技术实现同步开断的根本出路在于用电子开关取代机械开关。美国西屋

7、公司已制造出13KV、600A、由GTO元件组成的固态开关,安装在新泽西州的变电站中使用。GTO开断时间可缩短到1/3ms,这是一样机械开关无法比拟的。现在,由固态开关构成的电容器组的配电系统“软开关”已问世。(二)直流电源许多负载必须使用直流电源,世界上发电总量的2030%(三)不间断电源(UPS)和各种ACDC、DCAC开关电源程控交换站,运算机、电视、医疗设备、航天、航海舰艇及家电上,都广泛应用开关电源,这些开关电源都采用高频化技术,使其体积重量大大减小,能耗和材料也大为降低。为提高电源的单位功率密度,开关电源高频化是发展的方向。为减少由于频率提高而使开关损耗增加的问题,从而发展了各种软

8、开关技术。(四)各种频率的全固态化交流电源这是为各种工业需要的变频电源。在20世纪80年代末,我国约有20万台60200KW的高频设备,现在用晶闸管中频感应加热装置已完全取代了中频发电机,国内已形成2008000Hz,功率为1003000KW的系列产品。在高频电源方面则用功率MOSEFT制造出1000KW/15600KHz(比利时),用SIT(静电感应晶闸管)制造出1000KW/200KHz和400KW/400KHz(日本)的感应加热装置,效率都在90%以上。国内已研制出75KW/200KHz的SIT感应加热装置。这样采用全固态高频感应加热装置可以大大节能电力电子技术百科名片电力电子技术是一门

9、新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。目录简介 应用 作用 器件 进展 编辑本段简介电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。 现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。 电力电子学(Power Electronics)这一名称是在上世纪60年代显现的。1974年,美国的W.New

10、ell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。这一观点被全世界普遍接受。“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。 一样认为,电力电子技术的产生是以1957年美国通用电气公司研制出的第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。此前就已经有用于电力变换的电子技术,所以晶闸管显现前的时期可称为电力电子技术的史前或清晨时期。70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(Power-MOSFET)为代表的全控型器件全速发

11、展(全控型器件的特点是通过对门极既栅极或基极的控制既可以使其开通又可以使其关断),使电力电子技术的面貌焕然一新进入了新的发展阶段。80年代后期,以绝缘栅极双极型晶体管(IGBT 可看作MOSFET和BJT的复合)为代表的复合型器件集驱动功率小,开关速度快,通态压降小,在流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。为了使电力电子装置的结构紧凑,体积减小,常常把若干个电力电子器件及必要的辅助器件做成模块的形式,后来又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC)。目前PIC的功率都还较小但这代表了电力电子技术发展的一个重要方向。 利用电力电子器件实现工业规模

12、电能变换的技术,有时也称为功率电子技术。一样情形下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业

13、服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸取了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等

14、技术常在这些装置及其系统中大量应用。 编辑本段应用一样工业: 交直流电机、电化学工业、冶金工业 交通运输: 电气化铁道、电动汽车、航空、航海 电力系统: 高压直流输电、柔性交流输电、无功补偿 电子装置电源: 为信息电子装置提供动力 家用电器: “节能灯”、变频空调 其他: UPS、 航天飞行器、新能源、发电装置 编辑本段作用(1) 优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节省,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,

15、所以推广应用电力电子技术是节能的一项战略措施,一样节能成效可达10%-40%,我国已将许多装置列入节能的推广应用项目。 (2) 改造传统产业和发展机电一体化等新兴产业。据发达国家猜测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与运算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥运算机作用的保证和基础。 (3) 电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度

16、达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。 (4) 电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。 编辑本段器件02年显现了第一个玻璃的汞弧整流器。1910年显现了铁壳汞弧整流器。用汞弧整流器代替机械式开关和换流器,这是电力电子技术的发端。1920年试制出氧化铜整流器,1923年显现了硒整流器。30年代,这些整流器开始大量用于电力整流装置中。20世纪40年代末

17、显现了晶体管。20世纪50年代初,晶体管向大功率化发展,同时用半导体单晶材料制成的大功率二极管也得到发展。1954年,瑞典通用电机公司(ASEA公司)第一将汞弧管用于高压整流和逆变,并在100千伏直流输电线路上应用,传输20兆瓦的电力。1956年,美国人J.莫尔制成晶闸管雏型。1957年,美国人R.A.约克制成实用的晶闸管。50年代末晶闸管被用于电力电子装置,60年代以来得到迅速推广,并开发出一系列派生器件,拓展了电力电子技术的应用领域。 电力电子电路 随着晶闸管应用的推广,开发出许多电力电子电路,按其功能可分为:将交流电能转换成直流电能的整流电路;将直流电能转换成交流电能的逆变电路;将一种形

18、式的交流电能转换成另一种形式的交流电能的交流变换电路;将一种形式的直流电能转换成另一种形式的直流电能的直流变换电路。这些电路都包含晶闸管,而每个晶闸管都需要相应的触发器。于是配合这些电力电子电路显现了许多的触发控制电路。根据所用的器件,这些控制电路大体上可以分为3代。第一代的控制电路主要由分立的电子元件(如晶体管、二极管)组成。直到80年代后期,还用得不少。第二代由集成电路组成。自从1958年美国显现了世界上第一个集成电路以来,发展非常迅速。它应用到电力电子装置的控制电路中,使其结构紧凑,功能和可靠性得到提高。第三代由微机进行控制。70年代以来,由于微机的发展使电力电子装置进一步朝实现智能化的

19、方向进步。 电力电子装置 随着电力电子电路的发展和完善,由晶闸管组成的许多类型的电力电子装置不断显现。如大功率的电解电源、焊接电源、电镀用的直流电源;直流和交流牵引、直流传动、交流串级调速、变频调速等传动用电源;励磁、无功静止补偿、谐波补偿等电力系统用的电力电子装置;低频、中频、高频电源等各种非工频电源,特别是感应加热的中高频电源;不停电电源、交流稳压电源等各种工业用电力电子电源;各种调压器等等。这些电力电子装置,与传统的电动机-发电机组比,有较高的电效率(以容量10千瓦至数百千瓦、频率为1000赫的电动机-发电机组为例,在额定负载下,效率80,并随负载减小而显著降低,若用晶闸管电源,92,且

20、随负载变化不大),因此,有明显的节能成效。电力电子装置是静止式装置,占地面积小,重量轻,安装方便(以焊接电源为例,与旋转焊机相比,重量减轻80,节能15)。同时,电力电子装置往往对频率、电压等的调剂比较容易,响应快,功能多,自动化程度高,因此用于工业上不但明显节能,还往往能提高生产率和产品质量,节省原材料,并常能改善工作环境。但电力电子装置大多为电子开关式装置,它往往对电网和负载产生谐波干扰,有时还对周围环境引起一定的高频干扰,这是在设计这些装置和系统时必须妥善解决的(见高次谐波抑制)。 编辑本段进展从20世纪50年代中到70年代末,以大功率硅二极管、双极型功率晶体管和晶闸管应用为基础(特别是

21、晶闸管)的电力电子技术发展比较成熟。70年代末以来,两个方面的发展对电力电子技术引起了庞大的冲击。其一为微机的发展对电力电子装置的控制系统、故障检测、信息处理等起了重大作用,今后还将连续发展;其二为微电子技术、光纤技术等渗透到电力电子器件中,开发出更多的新一代电力电子器件。其中除普通晶闸管向更大容量(6500伏、3500安)发展外,门极可关断晶闸管(GTO)电压已达4500伏,电流已达 25003000安;双极型晶体管也向着更大容量发展,80年代中后期其工业产品最高电压达1400伏,最大电流达400安,工作频率比晶闸管高得多,采用达林顿结构时电流增益可达75200。 随着光纤技术的发展,美国和

22、日本于19811982年间相继研制成光控晶闸管并用于直流输电系统。这种光控管与电触发的晶闸管相比,简化了触发电路,提高了绝缘水平和抗干扰能力,可使变流设备向小型、轻量方向发展,既降低了造价,又提高运行的可靠性。同时,场控电力电子器件也得到发展,如功率场效应晶体管(power MOSFET)和功率静电感应晶体管(SIT)已达千伏级和数十至数百安级的电压、电流等级,中小容量的工作频率可达兆赫级。由场控和双极型合成的新一代电力电子器件,如绝缘栅双极型晶体管(IGT或IGBT)和MOS控制晶闸管(MCT)也正在兴起,容量也已相当大。这些新器件均具有门极关断能力,且工作频率可以大大提高,使电力电子电路更

23、加简单,使电力电子装置的体积、重量、效率、性能等各方面指标不断提高,它将使电力电子技术发展到一个更新的阶段。与此同时,电力电子器件、电力电子电路和电力电子装置的运算机模拟和仿真技术也在不断发展。电力电子技术是研究电力半导体器件实现电能变换和控制的学科,它是一门电子、电力半导体器件和控制三者相互交叉而显现的新兴缘学科。它研究的内容非常广泛,主要包括电力半导体器件、磁性材料、电力电子电路、控制集成电路以及由其组成的电力变换装置。目前,电力电子学研究的主要方向是:(1) 电力半导体器件的设计、测试、模型分析、工艺及仿真等;(2) 电力开关变换器的电路拓扑、建模、仿真、控制和应用;(3) 电力逆变技术及其在电气传动、电力系统等工业领域中的应用等。电动汽车(EV)作为清洁、高效和可连续发展的交通工具,既对改善空气质量、保护环境具有重大意义,又对日益严重的石油包机提供了解决方法;同时,电动汽车作为电力电子技术的一个新的应用领域,涵盖了DC/DC和DC/AC的全部变换,是实用价值非常高的运用领域。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服