1、东南大学软件工程硕士研究生入学考试数学考试大纲 要求学生比拟系统地理解微积分和线性代数的根本概念和根本理论。掌握微积分和线性代数的根本方法。要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。 数学考试为笔试,考试时间为3小时。 函数的慨念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 根本初等甬数的性质及其图形 初等函数 简单应用问题函数关系的建立 数列极限与函数极限的定义以及它们的性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比拟极限的四那么运算 极限存在的两个准那
2、么:单调有界准那么和夹逼准那么 两个最要极限 函数连续的慨念 函数问断点的类型 初等甬数的连续性 闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理) (1)理解函数的概念,掌握函数的表示方法 (2)了解函数的奇偶性、单调性、周期性和有界性。 (3)理解复合函数及分段函数的概念。了解反函数及隐函数的概念。 (4)掌握根本初等函数的性质及其图形。 (5)会建立简单应用问题中的函数关系式。 (6)理解极限的概念,理解函数的左极限与右极限的慨念。以及极限存在与左、右极限之间的关系。 (7)掌握极限的性质及四那么运算法那么。 (8)掌握极限存在的两个准那么,并会利用它们求极限,掌握利用两个重
3、要极限求极限的方法。 (9)理解无穷小、无穷大的概念,掌握无穷小的比拟方法,会用等价无穷小求极限。 (10)理解函数连续性的概念(含左连续与右连续),会判别函数连续点的类型 (11)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理),并会应用这些性质。 导数与微分的概念 导数的物鲤意义与几何意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 根本初等函数的导数 导数与微分的四那么运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数的概念 某些简单函数的n阶导数 一阶微分形式的不变性 罗尔定理 拉格朗日中值定理 柯
4、西中值定理 泰勒公式 洛必达法那么 函数单调性的判定 函数的极值及其求法 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大最小值的求法及简单应用 弧微分 (1)理解导数与微分的概念,理解导数与微分的关系理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 (2)掌握导数的四那么运算法那么和复合函数的求导法那么,掌握根本初等函数的导数公式。了解微分的四那么运算法那么和一阶微分形式的不变性,会求函数的微分。 (3)了解高阶导数的概念。会求简单函数的n阶导数。 (4)会求分段函数的一阶、二阶导数。 (5)会求隐
5、函数以及参数方程所确定的函数的一阶、二阶导数,会求反函数的导数。 (6)理解并会用罗尔定理,拉格朗日中值定理。 (7)了解并会用柯西中值定理和泰勒定理。 (8)理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法,掌握函数最大最小值的求法及简单应用。 (9)会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平和铅直渐近线。 (1 0)掌握用洛必达法那么求未定式极限的方法。 原函数和不定积分的概念 不定积分的根本性质 根本积分公式 定积分的概念和性质 定积分中值定理 变上限定积分及其导数 牛顿一莱布尼茨公式 不定积分和定积分的换元积分法和分部积分法 广义积分的概念及其计算 定积分的应用
6、 (1)理解原函数、不定积分和定积分的概念。 (2)掌握不定积分和定积分的根本性质及定积分中值定理,掌握不定积分的根本公式,掌握不定积分和定积分的换元积分法和分部积分法。 (3)理解变上限定积分定义的函数及其求导定理,掌握牛顿一莱布尼茨公式。 (4)了解广义积分的概念并会计算广义积分。 (5)掌握用定积分表达和计算一些儿何量与物理量。如平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为的立体体积、变力作功、引力、压力等。 向量的概念 向量的线性运算 向量的数量积和向量积的概念及运算。两向量垂直平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面
7、方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直钱、直线与直线的平行、垂直的条件和夹角 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程 (1)理解空间直角坐标系,理解向量的概念及其表示。 (2)掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件。 (3)掌握单位向量、方向数与方向余弦、向量的坐标表示式,以及用坐标表示式进行向量运算的方法。 (4)掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)
8、解决有关问题。 (5)理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面方程及母线平行于坐标轴的柱面方程。 (6)了解空间曲线的参数方程和一般方程。 (7)了解空间曲线在坐标平面上的投影。并会求其方程。 多元函数的概念 二元函数的几何意义 二元函数的极限和连续的概念 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分的概念 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度的概念及其计算 空间曲线的切线和法平面 曲面的切平面和法线 多元函数极值和条件极值的概念 多元函数极值的必要条件 二元函数极值的充分条件 极值的求法
9、拉格朗日乘数法 多元函数的最大值、最小值及其简单应用 . (1)理解多元函数的概念,理解二元函数的儿何意义。 (2)了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 (3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 (4)理解方向导数与梯度的概念并掌握其计算方法。 (5)掌握多元复合函数偏导数的求法。 (6)会求隐函数(包括由方程组确定的隐函数)的偏导数。 (7)了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 (8)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数
10、极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二重积分的概念及性质 二重积分的计算和应用 两类曲线积分的概念、性质及计算两类曲线积分的关系 格林公式 平面曲线与路径无关的条件 全微分求原函数 (1) 理解二重积分的慨念,了解重积分的性质,了解二重积分的中值定理。 (2) 掌握二重积分(直角坐标、极坐标)的计算方法。 (3) 理解两类曲线积分的概念 了解两类曲线积分的性质及两类曲线积分的关系。 (4) 掌握计算两类曲线积分的方法 (5) 掌握格林公式并会运用平面曲线积分与路径无关的条件。会求全微分的原函数。 (6) 会用重积分、曲线积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心等)。 常数项级数的收敛与发散的慨念 收敛级数的和的慨念 级数的根本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的比拟判别法、比值判别法 交织级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的根本性质 简单幂级数的和函数的求法的麦克劳林展开式。