资源描述
H:\精品资料\建筑精品网原稿ok(删除公文)\建筑精品网5未上传百度
MSBR污水脱氮除磷处理工艺
连续流序批式活性污泥法新工艺( Modified Sequencing Batch Reactor, 简称MSBR) , 是同济大学顾国维教授课题组对传统活性污泥法( SBR) 进行了改进, 在工艺流程和结构形式上综合了Bardenpho,A2/O, 氧化沟, CAST等脱氮除磷工艺的优点, 开发成功的最新成果。
MSBR污水处理新工艺能使吨污水处理厂投资减少近三分之一, 而处理效果要优于传统的处理工艺。该工艺为各种微生物繁殖创造了最佳的环境条件和水力条件, 使有机物的降解、 氨氮的硝化、 磷的释放和吸收等生化过程一直处于高效反应状态, 提高了降解效率, 整个系统采用组合式联体结构, 不需设备初沉池和二沉池, 减少了占地面积, 降低了运行费用。
MSBR工艺可根据具体情况进行流程布局:
城市污水强化除磷系统: 突出系统的除磷效果, 保证最高的除磷效率, 而脱氮效率可在一定的变化范围内调整。
城市污水高效除磷脱氮系统: 可同时保证最高的脱磷和除氮效果, 进一步提高了脱氮效率。
工艺污水处理系统: 可根据处理对象和要求去除的污染物的不同进行相应的调整, 适用于含高浓度氨氮有机污水处理。
系统自动控制: 整个污水处理厂可实现自动控制, 根据处理规模的大小和构筑物的设置设定几个PLC控制子站, 可用上位机对系统设备的运行情况, 、 系统的运行参数进行实时监视, 对故障情况及时给予声光报警, 并可对系统参数进行设定, 自动生成并打印有关数据报表, 经过使用远程Modem, 可对污水处理厂实行异地地监控和操作。
MSBR工艺与一般传统的活性污泥工艺相比还具有如下四个特性:
1、 MSBR池集水量及水质调节、 生化反应与污泥沉淀功能于一身, 无需另建二沉池, 采用组合结构形式与其它工艺相比较而言, 土建投资较少;
2、 MSBR系统的运行经历缺氧、 厌氧、 缺氧、 沉淀等阶段, 微生物可经过多种途径进行代谢, 利用不同形态的氧源作为电子受体, 使有机质的降解更完全且能耗又省, 脱氮除磷效果更好;
3、 MSBR系统中污泥同样经过厌氧、 好氧环境, 筛选了优势菌种, 抑制了丝状菌的生长, 污泥的沉降性能和脱水性能良好, 较低的剩余污泥产率和较高剩余污泥浓度使该系统更具有吸引力;
4、 污泥浓度高, 耐冲击负荷能力强, 能适合各种进水水质的有机废水处理;
5、 排放剩余污泥浓度高, 体积小, 剩余污泥处理方便简捷。
一、 概述
MSBR( Modified Sequencing Batch Reactor) 是改良式序列间歇反应器, 是C.Q.Yang等人根据SBR技术特点[1-3], 结合传统活性污泥技术, 研究开发的一种更为理想的污水处理系统。MSBR既不需要初沉池和二沉池, 又能在反应器全充满并在恒定液位下连续进水运行。采用单池多格方式, 结合了传统活性污泥法和SBR技术的优点[4-5]。不但无需间断流量, 还省去了多池工艺所需要的更多的连接管、 泵和阀门。经过中试研究及生产性应用, 证明MSBR法是一种经济有效、 运行可靠、 易于实现计算机控制的污水处理工艺。
一、 MSBR的基本原理与特点
1、 MSBR的基本组成
反应器的三个主要部分组成: 曝气格和两个交替序批处理格。主曝气格在整个运行周期过程中保持连续曝气, 而每半个周期过程中, 两个序批处理格交替分别作为SBR和澄清池。如图1所示。
4序批处理格
3曝气格
2曝气格
1序批处理格
图1 MSBR平面布置图
2、 MSBR的操作步骤
在每半个运行周期中, 主曝气格连续曝气, 序批处理格中的一个作为澄清池( 相当于普通活性污泥法的二沉池作用) , 另一个序批处理格则进行以下一系列操作步骤, 如图2所示。
缺氧混合
步骤1
出水
澄清
曝气 曝气
进水
出水
曝气 曝气
澄清
缺氧混合
曝气 曝气
进水
步骤2
进水
出水
澄清
缺氧混合
步骤3
步骤4曝气 曝气
曝气
进水
出水
澄清
进水
进水
出水
曝气 曝气
澄清
静置沉淀
出水
曝气 曝气
步骤5
澄清
延时曝气
步骤6
图2 MSBR的运行过程示意图
步骤1: 原水与循环液混合, 进行缺氧搅拌。
在这半个周期的开始, 原水进入序批处理格, 与被控制回到主曝气格的回流液混合。在缺氧和丰富的硝化态氮条件下, 序批处理格内的兼性反硝化菌利用硝酸盐和亚硝酸盐作为电子受体, 以原水及内源呼吸所释放的有机碳作为碳源, 进行无氧呼吸代谢。由于初期序批处理格内MLSS浓度高, 硝化态氮浓度较高, 因此碳源成为反硝化速率的限制条件。随着原水的加入, 有机碳的浓度增加, 提高了反硝化的速率。
来自曝气格和序批格原有的硝态氮经过反硝化得以去除。另外, 该阶段运行也是序批处理格中较高浓度的污泥向曝气格回流的过程, 以提高曝气格中的污泥浓度。
步骤2: 部分原水和循环液混合, 进行缺氧搅拌。
随着步骤1中原水的不断进入, 序批处理格内有机物和氨氮的浓度逐渐增加。为阻止在序批处理格内有机物和氨氮的过分增加, 原水分别流入序批处理格和主曝气格。使序批处理格内维持一个适当的有机碳水平, 以利于反硝化的进行。混合液经过循环, 继续使序批处理格原来积聚的MLSS向主曝气格内流动。
步骤3: 序批格停止进原水, 循环液继续缺氧搅拌。
此后中断进入序批处理格的原水。原水在剩下的操作中, 直接进入主曝气格。这使得主曝气格降解大量有机碳, 并减弱微生物的好氧内源呼吸。序批处理格利用循环液中残留的有机物作为电子供体, 以硝化态氮作电子受体, 继续进行缺氧反硝化。由于有机碳源的减少, 缺氧内源呼吸的速率将提高。来自主曝气格的混合液具有较低的有机物和MLSS浓度。经循环, 把序批处理格内的残余有机物和活性污泥推入主曝气格, 在此进行曝气反应降解有机物, 并维持物质平衡。
步骤4: 曝气, 并继续循环。
进行曝气, 降低最初进水所残余的有机碳、 有机氮和氨氮, 以及来自主曝气格未被降解的有机物和内源呼吸释放的氨氮, 并吹脱在前面缺氧阶段产生的截留在混合液中的氮气。连续的循环增加了主曝气格内的微生物量, 同时进一步降低序批处理格中的悬浮固体, 降低了MLSS浓度, 有利于其在下半个周期中作为澄清池时, 减少污泥量以提高沉淀池的效率。
步骤5: 停止循环, 延时曝气。
为进一步降低序批处理格内的有机物和氮浓度, 减少剩余的氮气泡, 采用延时曝气。这步是在没有循环, 没有进出流量的隔离状态下进行。延时曝气使序批处理格中的BOD5和TKN达到处理的要求水平。
步骤6: 静置沉淀。
延时曝气停止后, 在隔离状态下, 开始静置沉淀, 使活性污泥与上清液有效分离, 为下半个周期作为澄清池出水做准备。沉淀开始时, 由于仍存在剩余的溶解氧, 沉淀污泥中的硝化菌继续硝化残余的氨, 而好氧微生物继续进行好氧内源呼吸。当混合液中氧减少到一定程度时, 兼性菌开始利用硝化态氮作为电子受体进行缺氧内源呼吸, 进行程度较低的反硝化作用。在整个半周期作为沉淀池, 其出水质量是可靠的。在这一步, 能够从交替序批处理格中排放剩余污泥。
第二个半周期: 步骤6的结束标志着处理运行的下半个循环操作开始。经过两个半周期, 改变交替序批处理格的操作形式。第二个周期与第一个半周期的6个操作步骤相同。
3、 MSBR法的主要运行特点
( 1) MSBR系统能进行不同配置的设计和运行, 以达到不同的处理目的。
( 2) 每半个运行周期中, 步骤的数量和每步骤所需的时间, 取决于原水的特性和出水的要求。这里介绍了6个运行步骤, 但所需总的步骤能够被系统设计者所选择。常常能够在实际运行中减少, 以便使运行过程简单化。例如, 步骤1和步骤2能经过延长步骤1和减少步骤2的时间来合并这两步为一步。增加步骤1的时间则增加序批处理格有机碳的量, 这使得在不进原水的缺氧混合时间需要更长, 以平衡步骤3。也能够增加步骤, 进行更多的缺氧、 好氧序批操作, 来处理有机物和氨氮浓度更高的原水, 以达到更低出水总氨的要求。
( 3) 在每半个循环中, 原水大部分时间是进入主曝气格。接着是部分或全部污水进入作为SBR的序批处理格。在主曝气格中完成了大部分有机碳、 有机氮和氨氮的氧化。另外, 主曝气格在完全混合状态下连续曝气, 创造了一个稳定的生物反应环境。这使得整个设备能承受冲击负荷的影响。
( 4) 从序批处理格到主曝气格的循环流动, 使得前者积聚的悬浮固体运送到了后者。循环也把主曝气格内的被氧化的硝化氮运行到在半个循环的大部分时期处在缺氧搅拌状态下的序批处理格, 实现脱氮的目的。
( 5) 污泥层作为一个污泥过滤器, 对改进出水质量和缺氧内源呼吸进行的反硝化有重要作用。
4、 MSBR法的应用于与发展
MSBR技术已在几个污水处理厂应用, 位于加拿大Saskatchewah 的Estevan 污水处理厂则为一实例。虽然由于严寒造成一些冰冻问题, 但污水厂还是取得了相当好的处理效率。平均温度为13℃, 系统处理效果( 测试时间1996年4月-1997年3月) 如表1所示。
表1 Estevan污水处理厂MSBR测试结果
项目
进水
出水
去除率( %)
BOD5( mg/l)
165
8.5
95
TSS( mg/l)
212
11
95
TKN( mg/l)
39
3.5
91
TP( mg/l)
5.1
1.9
63
实践表明MSBR是一种可连续进水、 高效的污水处理工艺, 且简单, 容积小, 单池。易于实现计算机自动控制。在较低的投资和运行费用下, 能有效地去除含高浓度BOD5、 TSS、 氮和磷的污水。总之, 系统在低HRT、 低MLSS和低温情况下, 具有优异的处理能力。MSBR技术的研究与发展方向如下:
( 1) MSBR技术的进一步发展是生物除磷或同时脱氮除磷。当前同济大学环境科学与工程学院对此正在作进一步的研究, 并已取得了有重要理论意义与应用价值的研究成果。
( 2) MSBR系统能够有各种不同配置, 例如沟( 渠) 形式, 且且现在已经在开发研究。
( 3) MSBR生物处理的动力学模式研究, 以提供普遍的设计和运行依据。
( 4) MSBR运行过程智能化控制的研究, 以实现系统的各操作过程, 具有适应性和最优控制。由于系统各格互联、 交替操作, 且能够经过选择、 组合与取舍操作步骤, 调整各操作步骤时间来控制运行, 其运行过程比较复杂。另外, 如果进水水质变化, MSBR法的运行过程更具有非线性、 时变性与模湖性的特点, 难于用数学模型根据传统控制理论进行有效控制, 因此对MSBR法这样复杂系统进行在线模湖控制, 将能得到其它控制方式无法实现的令人满意的控制效果。这也是MSBR法的一个重要研究方向。
展开阅读全文