1、第 30 卷第 1 期2023 年 2 月 工程设计学报 Chinese Journal of Engineering DesignVol.30 No.1Feb.2023双频激振下带V形缺口轴的疲劳寿命研究化春键1,2,李冬冬1,2,蒋毅1,2,俞建峰1,2,陈莹3(1.江南大学 机械工程学院,江苏 无锡 214122;2.江南大学 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122;3.江南大学 物联网工程学院,江苏 无锡 214122)摘 要:针对金属轴类零件在实际复杂工况下易产生应力集中而发生疲劳破坏的问题,利用双频激振系统,研究带V形缺口轴的疲劳寿命随缺口几何参数的变化规律
2、。首先,提出了促进轴疲劳裂纹萌生的激振频率控制曲线,同时采用响应曲面法中的Box-Behnken设计法对V形缺口的夹角、圆角半径和深度进行三因素三水平的实验设计;其次,建立了疲劳寿命多元回归预测模型,并采用方差分析法对模型进行可靠性评价;最后,利用响应曲面和等高线图分析了缺口的夹角、圆角半径和深度对轴疲劳寿命的影响规律,并进行了预测模型的应用。研究结果表明:疲劳寿命预测值与实测值之间的误差在4.2%以内,预测精度较高,预测模型可靠;缺口几何参数对疲劳寿命从大到小的影响次序是缺口深度、缺口圆角半径、缺口夹角,以圆角半径和深度的交互作用对轴疲劳寿命的影响最为显著。研究结果可为金属轴类零件的抗疲劳设
3、计提供重要参考。关键词:双频激振;V形缺口;疲劳寿命;响应曲面法;预测模型中图分类号:TG 111.91 文献标志码:A 文章编号:1006-754X(2023)01-0102-07Study on fatigue life of shaft with V-notch under dual-frequency excitationHUA Chun-jian1,2,LI Dong-dong1,2,JIANG Yi1,2,YU Jian-feng1,2,CHEN Ying3(1.School of Mechanical Engineering,Jiangnan University,Wuxi 21
4、4122,China;2.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment&Technology,Jiangnan University,Wuxi 214122,China;3.School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)Abstract:In view of the problem that metal shaft parts are prone to stress concentration and
5、fatigue failure under actual complex working conditions,the variation of fatigue life of shaft with V-notch with notch geometric parameters was studied by using dual-frequency excitation system.Firstly,the excitation frequency control curve to promote the initiation of shaft fatigue crack was propos
6、ed.At the same time,the Box-Behnken design method in response surface method was used to carry out the experimental design of three factors and three levels of angle,fillet radius and depth of V-notch;secondly,a multiple regression prediction model of fatigue life was established,and the reliability
7、 of the model was evaluated by variance analysis;finally,the influence of the angle,fillet radius and depth of the notch on the fatigue life of the shaft was analyzed by using the response surface and contour map,and the prediction model was applied.The results showed that the error between the pred
8、icted and experimental values of fatigue life was within 4.2%,the prediction accuracy was higher,and the prediction model was reliable;the influence of the geometric parameters of the notch on the fatigue life from large to small was the depth,fillet radius,and the angle of notch.The interaction of
9、fillet radius and depth had the most significant impact on the fatigue life of shaft.The research results can provide an doi:10.3785/j.issn.1006-754X.2023.00.015收稿日期:2022-07-16 修订日期:2022-08-02本刊网址在线期刊:http:/ 1 期化春键,等:双频激振下带V形缺口轴的疲劳寿命研究important reference for the anti-fatigue design of metal shaft pa
10、rts.Key words:dual-frequency excitation;V-notch;fatigue life;response surface method;prediction model随着中国制造业的高速发展,金属轴类零件的需求量逐年增多,且对其质量要求越来越高1。轴类零件在服役过程中主要承受扭矩、弯曲应力以及冲击载荷的作用,容易引发疲劳问题2-4,严重时其内部会萌生疲劳裂纹甚至发生疲劳断裂,进而造成工业事故。据统计,高达60%以上的金属轴类零件的失效源于疲劳破坏5。因此,许多学者对金属轴类零件的疲劳问题展开了理论和实验研究。李有堂等6采用有限元软件分析了U形切口轴在扭转载荷
11、作用下的疲劳寿命;张立军等7利用应力集中系数公式提出了在横幅载荷作用下棒料V形槽尖端裂纹寿命的数学表达式;李德勇等8采用名义应力法进行了缺口件振动疲劳寿命的分析与预测;赵升吨等9应用低应力疲劳裂纹可控式精密分离技术对金属棒、管材进行精密下料;Zhang等10提出了对棒料裂纹萌生和扩展阶段进行分段处理的方法,获得了高质量的断面变频加载曲线;胡海涛等11在不同激振频率下对2024铝合金悬臂梁进行了振动疲劳寿命的测试。可以看到,目前已有的研究大多是对金属轴类零件施加单频载荷来探究其对金属轴疲劳裂纹产生及寿命的影响。然而,金属轴类零件实际的工作环境是复杂多样的,仅采用单一类型的载荷进行实验不能真实反映
12、金属轴在实际服役载荷环境中的疲劳过程12,也不能准确预测轴类零件的疲劳寿命。因此,作者基于响应曲面法13,利用双频激振系统14进行实验设计,研究7A09铝合金轴 V 形缺口的几何参数对其疲劳寿命的影响规律;建立7A09铝合金轴疲劳寿命与V形缺口几何参数之间的二阶回归模型,并检验模型的准确性。1 双频激振系统的工作原理 作者自主研发了双频激振系统,如图1所示。双频激振载荷由大、小变频电机带动2组偏心机构产生,每组偏心机构中偏心机构的运转情况相同,使得产生的2组激振力在竖直方向均完全抵消,在水平方向叠加而产生双频激振力15。被夹具夹持的轴在双频激振力作用下,由于应力集中16,在缺口底部萌生、扩展疲
13、劳裂纹,进而发生疲劳断裂现象。带V形缺口轴的双频激振模型如图2所示。2 疲劳破坏实验设计 选用在工业领域广泛使用的7A09铝合金作为带V形缺口轴的材料,对其预制了若干不同几何参数的V形缺口。其几何参数如图3所示。图中:b为轴的半径;为缺口夹角;r为缺口圆角半径;d为缺口深度。已有研究表明,同时施加恒频的高频载荷和递减的低频载荷会加快带V形缺口轴表面裂纹的萌生17。采用的激振频率控制曲线如图4所示。实验中,取高频振动频率fh=25 Hz,低振动频率fl=012 Hz。在双频加载过程中,轴的振幅由加速度传感器、压电传感器实时采集,并通过LMS SCADAS多功能数据采集系统输出。采 用 响 应 曲
14、 面 法 中 的 Box-Behnken Design(BBD)设计法进行疲劳破坏实验三因素三水平设计。疲劳破坏实验三因素三水平设置如表1所示。缺口轴的疲劳寿命可通过其激振过程中的振幅历程得到。缺口轴的振幅历程如图5所示。缺口轴的振幅A在电机启动过程中逐渐增大,在达到某一极值后开始在一定范围内波动,随后在m时刻振幅达到最大值,最终在n时刻出现疲劳断裂的现象。图1双频激振系统Fig.1Dual-frequency excitation system图2带V形缺口轴的双频激振模型Fig.2Double-frequency excitation model of shaft with V-notch
15、 103工程设计学报第 30 卷 为了减小实验随机误差,以3次测量结果的平均值作为该组参数下的疲劳寿命。疲劳破坏实验结果如表2所示。表中y为疲劳寿命。3 疲劳寿命预测模型的建立及分析 3.1回归模型建立为了得到V形缺口的几何参数对轴疲劳寿命的影响规律,构建曲面响应法中目标函数与影响因子之间的二阶数学预测模型18,如式(1)所示。Y(x)=a0+i=13aixi+i=13j=i+13aijxixj+i=13aixi2+e (1)式中:Y()x为疲劳寿命预测值;x1、x2、x3分别为、r、d;a0、ai、aij、aii均为模型系数;e为误差。采用Design-Expert 12分析软件对实验数据进
16、行非线性回归拟合,得到带V形缺口轴在双频激振下疲劳寿命多元二阶预测模型,如式(2)所示。Y(x)=21.2+0.775x1+2.41x2-3.56x3-0.675x1x2+0.025x1x3+0.55x2x3+1.92x21+1.7x22-2.5x23(2)3.2疲劳寿命预测模型的方差分析对疲劳寿命预测模型进行方差分析,结果如表3所示。其中p代表回归方程的显著性水平。选择置信度为95%,p0.01表示该因素的影响极显著,p0.05表示该因素的影响不显著。F为统计特征量,其值越大,表示所对应的影响因子对响应值的影响越显著。由表可知:预测模型的p0.05,表图3带V形缺口轴几何参数示意Fig.3S
17、chematic of geometric parameters of shaft with V-notch图4激振频率控制曲线Fig.4Excitation frequency control curve表1疲劳破坏实验三因素三水平设置Table 1Setting of three factors and three levels of fatigue failure experiment水平-101因素/()6090120r/mm0.20.30.4d/mm123图5缺口轴的振幅历程Fig.5Amplitude history of notch axis表2带V形缺口轴疲劳破坏实验结果Tab
18、le 2Experimental results of fatigue failure of shaft with V-notch序号1234567891011121314151617/()12090909060120906090901209090609060120r/mm0.20.20.30.40.20.30.30.30.20.40.40.30.30.40.30.30.3d/mm23212123132222213y/s24.213.521.426.221.324.921.216.321.820.127.021.421.226.820.823.417.9 104第 1 期化春键,等:双频激振下
19、带V形缺口轴的疲劳寿命研究示失拟不显著,预测模型可靠;用来表征预测模型预测值和实验值吻合程度的多元相关系数R2=0.994 4,修正后的多元相关系数R2adj=0.987 3,R2与R2adj十分接近,说明模型预测值和实验值吻合程度较高19;表征实验可信度的变异系数Cv=1.88%,较小,表示实验结果是可信的20。同时,、r和d所对应的p值均小于0.05,说明它们对响应值的影响显著,其中r和d的所对应的p值都不大于0.000 1,说明r和d对疲劳寿命的影响极显著。、r和d所对应的F值依次增大,可以判断对目标函数影响的显著性从大到小依次为d、r、。预测在实验设置的17组V形缺口几何参数值下的轴疲
20、劳寿命。疲劳寿命预测值与实测值的对比如图6所示。由图可知,预测值与实测值较接近,误差均在4.2%以内。综上所述,基于响应曲面法得到的二阶回归模型可以预测双频激振下带V形缺口轴的疲劳寿命,且预测精度较高。3.3V形缺口几何参数对疲劳寿命的影响V 形缺口几何参数对疲劳寿命的影响规律如图7所示。应力集中是造成缺口类零件疲劳强度下降的重要因素21。由图 7(a)和(b)可知,当缺口夹角在 60120范围内变化时,疲劳寿命幅值变化较小,这是因为缺口夹角对缺口尖端应力集中的影响不明显,缺口尖端的应力集中因子变化较小22,疲劳强度也无明显变化,故疲劳寿命幅值只有小范围的波动。表3疲劳寿命预测模型方差分析结果
21、Table 3Variance analysis results of fatigue life prediction model来源预测模型x1x2x3x1 x2x1 x3x2 x3x12x22x32残差失拟项纯误差总和R2=0.994 4,R2adj=0.987 3,Cv=1.88%平方和207.614.8146.56101.531.820.002 51.2115.612.1726.321.160.922 50.24208.78自由度911111111173416均方差23.074.8146.56101.531.820.002 51.2115.612.1726.320.166 10.307
22、 50.06F值138.928.93280.37611.3710.970.015 17.2993.9573.27158.465.13p值0.000 10.0010.000 10.000 10.012 90.905 80.030 70.000 10.000 10.000 10.074 2图6带V形缺口轴疲劳寿命预测值与实测值的对比Fig.6Comparison between predicted and experimental values of fatigue life of shaft with V-notch图7V形缺口几何参数对疲劳寿命的影响规律Fig.7Influence rule
23、of V-notch geometric parameters on fatigue life 105工程设计学报第 30 卷 由图 7(a)和(c)可知,当缺口圆角半径在 0.20.4 mm 范围内变化时,疲劳寿命幅值变化较大,这是因为缺口圆角半径对缺口尖端应力集中的影响较明显。当缺口圆角半径较小时,缺口尖端的应力集中因子较大,疲劳强度较小,疲劳寿命幅值较小;当圆角半径增大至大于临界缺口半径(约为 0.3 mm)时23,缺口尖端的应力集中因子减小,疲劳强度增大,进而导致疲劳寿命幅值增大。由图7(b)和(c)可知,当缺口深度在13 mm范围内变化时,疲劳寿命幅值变化最大,这是因为缺口深度对缺口
24、尖端应力集中的影响很明显。当缺口深度较小时,缺口尖端的应力集中因子较小,疲劳强度较高,疲劳寿命幅值则较大;当缺口深度增大至2 mm左右时,缺口尖端的应力集中因子明显增大,疲劳强度降低迅速,进而导致疲劳寿命幅值大幅减小。通过以上分析可知,在V形缺口几何参数中,深度对疲劳寿命的影响最为显著,圆角半径次之,夹角的影响最小。进一步观察图7可以发现:疲劳寿命最大值为图(a)中的最高点27 s,和图(c)中的最高点26.2 s较为接近;最小值为图(c)中的最低点13.5 s,明显低于图(a)、(b)的极小值;在图(c)中响应曲面的倾斜角度最大,且等高线的曲率半径最大,表明r和d的交互作用对轴疲劳寿命的影响
25、最为显著。4 疲劳寿命预测模型的应用 选取=90,r=0.2 mm,以极显著影响因素d为变量,分别取为1.5、1.8和2.4 mm,双频激振频率的设置同第2节,采用疲劳寿命预测模型对缺口轴疲劳寿命进行预测,并将预测值与实测值进行对比,结果如表4所示。由表可知,疲劳寿命的预测值与实测值之间无明显差异,误差在合理范围内,表明预测模型的预测能力较好。5 结 论 1)利用Design-Expert 12分析软件建立了基于响应曲面法的7A09铝合金带V形缺口轴在双频激振下疲劳寿命二阶预测模型。理论分析及实验结果表明,该预测模型可靠,预测精度较高。2)根据疲劳损伤机理分析和疲劳寿命测试结果得出,V形缺口几
26、何参数对疲劳寿命从大到小的影响次序是缺口深度、缺口圆角半径、缺口夹角。利用响应曲面和等高线评价了影响因子的交互作用,其中以圆角半径和深度的交互作用对轴疲劳寿命的影响最为显著。研究结果可为金属轴类零件的抗疲劳设计提供重要参考。参考文献:1 李泳峄,赵升吨,孙振宇,等.花键轴高效精密批量化生产工艺的合理性探讨 J.锻压技术,2012,37(3):1-6.doi:10.3969/j.issn.1000-3940.2012.03.001LI Yong-yi,ZHAO Sheng-dun,SUN Zhen-yu,et al.Discussion on the rationality of the eff
27、icient and precise mass production process of spline shafts J.Forging Technology,2012,37(3):1-6.2 毕艳茹,王志勃,姜亚南.典型轴零件的综合机械性能分析 J.装备制造技术,2013(11):143-144,156.doi:10.3969/j.issn.1672-545X.2013.11.053BI Yan-ru,WANG Zhi-bo,JIANG Ya-nan.Comprehensive mechanical properties analysis of typical shaft partsJ.E
28、quipment Manufacturing Technology,2013(11):143-144,156.3 刘龙杰,赵礼辉,史成淼,等.基于响应面法传动直轴疲劳寿命优化 J.机械强度,2022,44:215-224.LIU Long-jie,ZHAO Li-hui,SHI Cheng-miao,et al.Fatigue life optimization of transmission straight shaft based on response surface method J.Mechanical Strength,2022,44(1):215-224.4 陈伟军,黄德杰,汪峰
29、,等.乘用车轮毂轴颈承载能力研究 J.机电工程,2022,39(5):668-673.doi:10.3969/j.issn.1001-4551.2022.05.014CHEN Wei-jun,HUANG De-jie,WANG Feng,et al.Research on bearing capacity of pass-enger wheel hub journalsJ.Mechanical and Electrical Engineering,2022,39(5):668-673.5 任皓靖.复合频率激振下轴类构件的断裂行为研究 D.无锡:江南大学,2019:1-7.REN Hao-jin
30、g.Research on fracture behavior of shaft 表4疲劳寿命预测模型的应用方案及结果Table 4Application scheme and result of fatigue life prediction model序号123456789/()90r/mm0.2d/mm1.51.82.4预测值/s22.021.218.4实测值/s22.322.623.220.420.020.818.619.218.6实测平均值/s22.720.418.8误差/%3.13.92.1 106第 1 期化春键,等:双频激振下带V形缺口轴的疲劳寿命研究members under
31、 compound frequency excitation D.Wuxi:Jiangnan University,2019:1-7.6 李有堂,李全宝.U形切口中缺口参数对轴类件疲劳寿命的影响 J.甘肃科学学报,2010,22(3):84-87.doi:10.3969/j.issn.1004-0366.2010.03.021LI You-tang,LI Quan-bao.Influence of notch parameters in U-shaped notches on fatigue life of shaft parts J.Gansu Science Journal,2010,22
32、(3):84-87.7 张立军,赵升吨.恒幅载荷下棒料V形槽尖端裂纹起始寿命的估算 J.塑性工程学报,2008(5):73-77.ZHANG Li-jun,ZHAO Sheng-dun.Estimation of crack initiation life at the tip of bar V-groove under constant amplitude loadJ.Chinese Journal of Plastic Engineering,2008(5):73-77.8 李德勇,姚卫星.缺口件振动疲劳寿命分析的名义应力法 J.航空学报,2011,32(11):2036-2041.LI
33、De-yong,YAO Wei-xing.Nominal stress method for vibration fatigue life analysis of notched parts J.Chinese Journal of Aeronautics and Astronautics,2011,32(11):2036-2041.9 赵升吨,任芋见,杨昌群,等.低应力疲劳裂纹可控式精密分离技术 J.塑性工程学报,2020,27(12):1-8.doi:10.3969/j.issn.1007-2012.2020.12.001ZHAO Sheng-tun,REN Yu-jian,YANG Ch
34、ang-qun,et al.Controllable precision separation technology for low stress fatigue cracks J.Chinese Journal of Plastic Engineering,2020,27(12):1-8.10 ZHANG Li-jun,ZHANG De-pei,WANG Han-xiang,et al.Research on variable frequency-loading curve in precision cropping system with high-speed and centrifuga
35、l actionJ.The International Journal of Advanced Manufacturing Technology,2018,97(5/8):2969-2978.11 胡海涛,李玉龙,索涛,等.2024铝合金振动疲劳特性及断口分析 J.航空材料学报,2013,33(4):78-83.HU Hai-tao,LI Yu-long,SUO Tao,et al.2024 aluminum alloy vibration fatigue characteristics and fracture analysis J.Journal of Aeronautical Mater
36、ials,2013,33(4):78-83.12 化春键,王超凡,陆云健.基于高低频复合振动的金属管材断裂行为研究 J.工程设计学报,2019,26(2):223-229.doi:10.3785/j.issn.1006-754X.2019.02.014HUA Chun-jian,WANG Chao-fan,LU Yun-jian.Study on fracture behavior of metal pipes based on high and low frequency composite vibration J.Chinese Journal of Engineering Design,
37、2019,26(2):223-229.13 WEI Ke,ZHAN Mei,FAN Xiao-guang,et al.Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface methodJ.Chinese Journal of Aeronautics and Astronautics,2018,31(4):845-859.14 化春键,任皓靖,陆
38、云健.双频激振系统下带V形槽棒料下料寿命模型 J.锻压技术,2019,44(7):177-183.HUA Chun-jian,REN Hao-jing,LU Yun-jian.The blanking life model of bar with V-groove under dual-frequency excitation system J.Forging Technology,2019,44(7):177-183.15 化春键,王超凡,陆云健.双频振动金属管材分离过程可控性研究 J.塑性工程学报,2019,26(5):190-196.doi:10.3969/j.issn.1007-201
39、2.2019.05.028HUA Chun-jian,WANG Chao-fan,LU Yun-jian.Study on the controllability of the separation process of metal pipes with dual-frequency vibration J.Chinese Journal of Plastic Engineering,2019,26(5):190-196.16 YU Hai-bing,CHEN Tie-feng,QIU Yan-jie.Optimal location and shape definition of ellip
40、tical ventilation openings on aero engine turbine rotors with stress concentration effectJ.Chinese Journal of Aeronautics and Astronautics,2022,35(1):388-397.17 化春键,陆云健,袁浩.双频振动载荷下带V形槽铝合金棒料的断裂行为 J.中国机械工程,2017,28(14):1753-1758.HUA Chun-jian,LU Yun-jian,YUAN Hao.Fracture behavior of aluminum alloy bars
41、 with V-groove under dual-frequency vibration load J.China Mechanical Engineering,2017,28(14):1753-1758.18 史丽晨,贾永康,张军锋.车削去除钛合金棒材表面氧化皮工艺参数试验研究 J.表面技术,2021,50(5):372-379.SHI Li-chen,JIA Yong-kang,ZHANG Jun-feng.Experimental research on process parameters of removing oxide scale from titanium alloy bar
42、s by turningJ.Surface Technology,2021,50(5):372-379.19 佘文韬,樊文欣,史永鹏,等.基于响应曲面法的连杆衬套表面粗糙度预测模型和优化 J.塑性工程学报,2017,24(6):172-176.SHE Wen-tao,FAN Wen-xin,SHI Yong-peng,et al.Prediction model and optimization of connecting rod bushing surface roughness based on response surface methodJ.Chinese Journal of Pla
43、stic Engineering,2017,24(6):172-176.20 徐勇,尹阔,夏亮亮,等.面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化 J.航空学报,2021,42(10):358-369.XU Yong,YIN Kuo,XIA Liang-liang,et al.Optimization of impact hydroforming process for aerospace aluminum alloy thin-walled deep cavity components J.Journal of Aeronautics and Astronautics,2021,42(1
44、0):358-369.107工程设计学报第 30 卷 21 陈涛,刘攀,徐晓.疲劳强度减弱系数与应力集中系数在螺纹疲劳分析中的应用研究 J.核动力工程,2018,39(3):62-66.CHEN Tao,LIU Pan,XU Xiao.Application of fatigue strength reduction factor and stress concentration factor in thread fatigue analysisJ.Nuclear Power Engineering,2018,39(3):62-66.22 赵仁峰,杨明顺,肖旭东,等.管材表面环状V形缺口几何参
45、数对应力集中效应的影响 J.塑性工程学报,2020,27(12):106-112.ZHAO Ren-feng,YANG Ming-shun,XIAO Xu-dong,et al.Influence of geometrical parameters of annular V-notch on pipe surface on stress concentration effectJ.Chinese Journal of Plastic Engineering,2020,27(12):106-112.23 靖雅,钟飞,苑光健,等.基于晶体塑性理论的GH4169合金缺口效应研究 J.机械工程材料,2021,45(5):84-90,95.doi:10.11973/jxgccl202105015JING Ya,ZHONG Fei,YUAN Guang-jian,et al.Research on notch effect of GH4169 alloy based on crystal plasticity theory J.Mechanical Engineering Materials,2021,45(5):84-90,95.108