资源描述
§几类不同增长的函数模型教案
【教学目标】
1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3. 恰当运用函数的三种表示法〔解析式、图象、表格〕并借助信息技术解决一些实际问题.
【教学重难点】
教学重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
【教学过程】
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
〔二〕情景导入、展示目标。
材料:澳大利亚兔子数“爆炸〞
1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量到达75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
一般而言,在理想条件〔食物或养料充足,空间条件充裕,气候适宜,没有敌害等〕下,种群在一定时期内的增长大致符合“J〞型曲线;在有限环境〔空间有限,食物有限,有捕食者存在等〕中,种群增长到一定程度后不增长,曲线呈“S〞型.可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的,感知指数函数变化剧烈。
〔三〕典型例题
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案
(1)请你分析比较三种方案每天回报的大小情况
思考:各方案每天回报的变化情况可用什么函数模型来反映
(2)你会选择哪种投资方案
思考:选择投资方案的依据是什么
反思:
①在本例中涉及哪些数量关系如何用函数描述这些数量关系
② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.
解析:我们可以先建立三种投资方案所对应的模型,在通过比较他们的增长情况,为选择方案的依据。
解:设第天的回报为元,那么方案一可以用进行描述,方案二可以用进行描述,方案三可以用进行描述,要对三个方案进行选择,就要对增长情况进行分析。〔见课本95页分析 〕
点评:在解决实际问题中,函数图像能够发挥很好的作用,因此,我们应该注意提高学生的读图能力。
变式训练1 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染
例2某公司为了实现1000万元利润的目标,准备制定一个鼓励销售部门的奖励方案:在销售利润到达10万元时,按销售利润进行奖励,且奖金〔单位:万元〕随销售利润〔单位:万元〕的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:
;;.
问:其中哪个模型能符合公司的要求
反思:
① 此例涉及了哪几类函数模型本例实质如何
② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求
解析:根据实际,提示引导,判定所给的奖励模型是否符合公司要求,就是依据这个模型进行奖励时,总奖金不超过5万元。
变式训练2
经市场调查分析知,某地明年从年初开始的前个月,对某种商品需求总量 (万件)近似地满足关系
.
写出明年第个月这种商品需求量 (万件)与月份的函数关系式.
(四)小结
解决应用题的一般程序:
①审题:弄清题意,分清条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③解模:求解数学模型,得出数学结论;
④复原:将用数学知识和方法得出的结论,复原为实际问题的意义。
【板书设计】
一、几类函数模型
二、例题
例1
变式1
例2
变式2
【作业布置】课本98页1,2
§几类不同增长的函数模型学案
课前预习学案
一、预习目标
对于根本的实际问题能抽象出数学模型。
二、预习内容
〔预习教材P95~ P98,找出疑惑之处〕
阅读:澳大利亚兔子数“爆炸〞
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量到达75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3. 恰当运用函数的三种表示法〔解析式、图象、表格〕并借助信息技术解决一些实际问题.
学习重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
学习难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
二、学习过程
典型例题
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案
反思:
①在本例中涉及哪些数量关系如何用函数描述这些数量关系
② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.
变式训练1 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染
例2某公司为了实现1000万元利润的目标,准备制定一个鼓励销售部门的奖励方案:在销售利润到达10万元时,按销售利润进行奖励,且奖金〔单位:万元〕随销售利润〔单位:万元〕的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:
;;.
问:其中哪个模型能符合公司的要求
反思:
① 此例涉及了哪几类函数模型本例实质如何
② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求
变式训练2
经市场调查分析知,某地明年从年初开始的前个月,对某种商品需求总量 (万件)近似地满足关系
.
写出明年第个月这种商品需求量 (万件)与月份的函数关系式.
四、反思总结
解决应用题的一般程序:
①审题:弄清题意,分清条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③解模:求解数学模型,得出数学结论;
④复原:将用数学知识和方法得出的结论,复原为实际问题的意义.
五、当堂达标:课本108页2题
课后练习与提高
1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为〔 〕.
A. B. y=2 C. y=2 D. y=2x
2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,假设要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用〔 〕.
A. 一次函数 B. 二次函数
C. 指数型函数 D. 对数型函数
3. 一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解析式为〔 〕.
A. y=20-2x 〔x≤10〕 B. y=20-2x 〔x<10〕
C. y=20-2x 〔5≤x≤10〕 D. y=20-2x〔5<x<10〕
4. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,那么销量y与投放市场的月数x之间的关系可写成.
5. 如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t〔月〕的近似函数关系:(t≥0,a>0且a≠1).有以下表达
① 第4个月时,剩留量就会低于;
O
1 2 3 4
y
1
t(月)
② 每月减少的有害物质量都相等;
③ 假设剩留量为所经过的时间分别是,那么.
其中所有正确的表达是 .
6.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售. 这样,仍可获得25%的纯利.求此个体户给这批服装定的新标价与原标价之间的函数关系.
展开阅读全文