收藏 分销(赏)

《大数据》读后感2000字.doc

上传人:二*** 文档编号:4510305 上传时间:2024-09-26 格式:DOC 页数:8 大小:19.54KB
下载 相关 举报
《大数据》读后感2000字.doc_第1页
第1页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、大数据读后感2000字 大数据读后感2000字 如今,我们正处于一个大数据时代,有时候数据给了我们有力的证明。以下是、大数据2000字,欢送阅览! 这两年,大数据,云计算的思想就像小苹果的音乐一样,传的到处都是,每一个公司不管是互联网公司还是传统企业,都标榜自己的大数据。 曾几何时,物联网的概念闹得风生水起,庞大的物联网能够让世间大量的物体,都能够被检测 并联网,包括了人、车、房等一切能够被联网的物体,这些物体都能够以种方式被感知他的存在,并对其信息记录在案,以供使用。在假设干年前,这还是一种看似遥不可及的事物,要对每个物体都贴上一个RFID的标签,显得不切实际。如今,随着 的大量使用,人类本

2、身也被参加了物联网中。为什么要物联网?是为了获取什么?要知道物联网获取了什么,只需要看看在一个物体在没有参加物联网与参加物联网之后,我们多出了哪些东西便能够知晓。那么,很明显,我们需要通过某种方式来获取该物体的信息,这种存储下来的信息,就叫做数据。 物联网产生的数据是实体的物品之间的信息,而现在的互联网上,占最大数据量的,是虚拟物品,或者叫做网络虚拟物品。由于网络物体是直接寄生于网络,具有能够方便的接入网络的特征,因此,在获取实体物体信息还有一定难度的时期,占有很大优势。但今后实体的物联网产生的数据量一定会不断增加,或许,能够超越网络上的物物相连数据量。 网络的广泛使用,使得信息的产生于传遍变

3、得容易,每个接入网络的人都以一定的角色存在,都是网络的信息的创造者。对于所产生的信息而言,每个接入网络的人又身兼多角,对于网络效劳商,他是网络使用者的角色;对于门户网站而言,他是使用的用户;对于社交网站而言,我们那么扮演一个虚拟或者真实的网络角色;对于浏览器而言,他是一系列的浏览网页、一些列鼠标动作的角色 不同的角色取决于对方需要从我们的行为中获取哪些信息。将网络上各种角色看成是虚拟的物体,那么,这种虚拟物体构成的虚拟物联网便产生了宏大的数据量。经历过一直以来缺乏信息获取渠道的日子,现在,既然信息获取变得如此容易,那么,必然迎来信息量暴增的时代大数据时代。 技术的改变,使得我们思维方式也要随之

4、发生变化。在过去的小数据时代,由于获取信息、存储信息、信息都是费时费力的活,我们只能精打细算,捉摸着如何以最小的代价、最快的方式来收集尽可能准确的信息。之所以会有抽样统计的方式,是受技术所限,无法获得全体的样本,或者就算获取了也无法在合理的时间内进展处理。由于信息获取代价大,使得我们不得不在获取信息前,就把一切都想清楚,才能够着手处理。这就像在计算机出现的初期,使用纸袋来编码的时期,一次出错的代价太大,所以人们不得不在输入前将代码验证过无数遍之后才敢输入到机器中。而现代计算机让编码的效率大大提升,这才使得人们能够创造出更加强大的软件。人们不需要在着手编码前就对代码过分深思熟虑,因为机器会帮助你

5、解决一些问题。因此,那些担忧由于获取数据太方便,进展数据处理、分析代价太小而使人们变得懒惰或者做事欠考虑的家伙,真是杞人忧天。历史上,技术的进步都会提升人类的生产力,但却没有让人们变得懒惰,因为与此同时,欲望也随之增长。人类只会变得更伟大。 因此,大数据时代,这个数据更加全面的时代,我们可以涉足一些之前由于缺乏数据而无法涉及的领域,例如预测。这是一个令人兴奋的领域,但其实这个领域早有苗头,而且大家都是受益者。我们平时使用的输入法中的智能联想功能,能够根据我们之前输入的文字,来预测我们接下来有可能输入的文字,以节省我们的输入时间。这种算法里,没有人工智能,而只有人们大量的输入习惯的统计,通过大量

6、数据的统计来预测,是一个统计学的方式而非参加了特有的规那么或者逻辑。这便引出了在大数据时代,对于信息处理的一种重要方式,基于统计,得出不同个体的相关关系,却无需了解其因果关系,而我们那么受益于相关关系。这种方式,看似有些投机取巧,却能够在关键时刻令我们处于优势地位。我们已经习惯了先知道某些事物的因果逻辑,继而推断出相应的结果。但世间总会有一些令人无法用合理的逻辑进展解释的现象,假设通过大数据分析,我们能够跳过逻辑阶段直接享用某些一些结果(沃尔玛的啤酒加尿布案例),岂不乐哉。当然,严密的逻辑永远是值得尊敬的。 在经历过了从广度上通过新把戏来吸引用户的时代,由于技术的提高,一个创业者在一个新的领域

7、开辟的东西很容易被其他人所复制。在这个时候,深度很重要。特别是购物网站、微薄、门户网站这类信息量大的网站,越是了解一个用户,优势就越大。所以,在技术已经不是最重要的因素的时代,如何增加用户的黏性、忠诚度便是首要的。通过用户之前的信息,来推测用户的喜好,给用户推荐相应的信息或物品。当你越了解一个用户,而别人却不了解时,这个用户就越离不开你。微薄中有他的智能排序功能、新闻门户中有“今日头条”应用,各类购物网站有他的推荐算法(但这个纯粹为了增加消费而非增加用户黏性),都能够根据用户之前的浏览、偏好来给出相应的推荐。这些的根底,都是拥有用户的行为记录,否那么,都无从谈起。 各行各业,都在疯狂的抓紧时机

8、,获取数据,拥有足量的数据,那一切就变得皆有可能。 但凡过去,皆为序曲是大数据业者最喜欢引用的语句。大数据是现在的潮流,大数据时代被认为是了解大数据的初级读物。近期连续读了两遍,第二遍是为了写这篇读后感,总体而言,值得一看,但细节方面却需要讨论了。 维基百科对大数据的解释:Big data,或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模宏大到无法通过人工,在合理时间内到达截取、管理、处理、并成为人类所能解读的信息。 有人说现在是读图时代,除去小说、心灵鸡汤以外,现在的畅销书根本都有图片,这本书是一个特例 首先尝试解析一下作者的三大观点,这三大观点是大数据业者很喜欢引用的三句话: 我想

9、所有人都能意识到对全体数据的分析优于对随机样本的分析,但在现实中我们经常拿不到全体数据:一是数据的收集方法,每一种方法都有适用的范围,不太可能包罗万象;二是数据分析的角度,战斗机只能统计到飞回来的飞机上的弹孔,而坠毁的那么无法统计,沃德通过分析飞回来的战斗机得出来最易导致坠毁的薄弱点;三是处理能力跟不上,就像以前的天气预报太离谱是因为来不及算那些数据。“采样分析是信息缺乏时代和信息流通受限制的模拟数据时代的产物”,作者显然只关注了一局部原因。 从语言的理解上看,什么是全体数据,终究是“我们需要的所有数据”,还是“我们能收集到的所有数据”,书中的很多商业案例中,处理的只是“我们能收集到的所有数据

10、”,或者说是“我们认为的全体数据”。人对自然的认识总是有限的,存在主义认为世界没有终极的目标。书中举例“Farecast使用了每一条航线整整一年的价格数据来进展预测”,而“整整一年”就是一个采样,或者是“我们需要的所有数据”。 从历史的角度看,国外的托勒密建亚历山大图书馆唯一的目的是“收集全世界的书”,实现“世界知识总汇”的梦想,国内的乾隆汇编四库全书,每个收集的过程都有主观因素在里面,而他们当时都认为可以收集全部的书籍,到最后,我们也没有得到那个梦中的全体。 既然我们过去总是在抽样,那本身就是在一个置信水平下,有明确的容错度或者是偏差值。人类永远知道我们是在准确性受限的条件下工作。同时,作者

11、本身也成认 “错误并不是大数据固有的特性,而是一个亟需我们去处理的现实问题,并且有可能长期存在”。那大数据的特征终究是准确性还是混杂性? 由此衍生出一个问题,大数据的品质如何控制:一、本身就不要求准确,但是不准确到何种程度是需要定义的,否那么就乱套了,换个角度,如果定义了容错度,那符合条件的都是准确的(或者说我这句话还是停留在小数据时代?这里的逻辑我没有理顺)。就像品质管理大师克劳斯比提出过零缺陷理论,我一直觉得是一个伪命题,缺陷是一定存在的,就看如何界定了;二、大量非构造化数据的处理,譬如说对新闻的量化、情感的分析,目前对非SQL的应用还有宏大的进步空间。 “一个东西要出故障,不会是瞬间的,

12、而是慢慢地出问题的”。“通过找出一个关联物并监控它,我们就能预测未来”。这句话当然是很认同,但不意味着我们可以放弃准确性,只是说我们需要重新定义准确度。之于工程管理行业,如果一个工程出了严重的问题,我们相信,肯定是很多因素和过程环节中出了问题,我们也失去了很屡次挽救的时机。而我们一味的容忍混杂性的话,结果显然是不能承受的。 这是本书对大数据理论的最大的奉献,也是最受争议的地方。连译者都有点看不下去了。 相关关系我实在是太熟了,打小就学的算命就是典型的“不是因果关系,而是相关关系”。算命其实是对趋向性的总结,在给定条件下,告诉你需要远离什么,接近什么,但不会告诉你为什么那样做。 我们很多时候都在

13、说科学,然而,什么是科学,没有人能讲清楚。我对科学的认识是:一、有一个明确的范围;二、在这个范围内树立一个强制正确的公理;三、有明确的推演过程;四 可以复制。科学的霸道表达在把一切不符合这四个条件的事物都斥为伪科学、封建迷信,而把自己的错误都用不符合前两条来否决。从这个定义来看,大数据不符合科学。 混沌学理论中的蝴蝶效应主要关注相关关系。它是指对初始条件敏感性的一种依赖现象,输入端微小的差异会迅速放大到输出端,但能输出什么,谁也不知道。 人类一旦放弃了对因果关系的追求,也就放弃了自身最优秀的品质:意志力。很多人不愿意相信算命是担忧一旦知道了命运,就无法再去奋斗。即使我相信算命,也在探求相关关系

14、中的因果要素。我放弃第一份工作的原因之一是厌倦了如此确定的明天:一个任务发出去,大概能预测到哪些环节会出问题,只要不去 follow,这些环节十有八九会出问题。 解析完这三大观点,下面是我对大数据理论的一些疑惑。大数据是目前风行的反响经济中的重要一环,在金融、互联网行业的应用最为广泛,而这些行业都是大家所认为的高薪领域。很多时候我就在想,所谓无形的手所产生的趋势终究是不是无形的。比方几家公司强推一个概念,说这是趋势,不久就真的变成趋势了。我们身边活生生的例子就是天猫的双十一和京东的618,一个巨头开路,无数人跟风,自然就生造出购物节,至于合理不合理,追究的意义也不大,因为很多事情是没有可比性的。这和没有强制控制中心的蜂群思维又不一样。 看完这本书,总是觉得作者说的过于绝对,也许是我的认识太浅了吧,所以最后用法演四戒做总结: 势不可以使尽,使尽那么祸必至 福不可以受尽,受尽那么缘必孤 话不可以说尽,说尽那么人必易 规矩不可行尽,行尽那么事必繁

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 应用文书 > 心得体会

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服