收藏 分销(赏)

现代频率合成技术课程设计—基于MATLAB的DDS设计与仿真.doc

上传人:二*** 文档编号:4509676 上传时间:2024-09-26 格式:DOC 页数:24 大小:425KB
下载 相关 举报
现代频率合成技术课程设计—基于MATLAB的DDS设计与仿真.doc_第1页
第1页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、- -基于MATLAB的DDS设计与仿真摘要:利用matlab仿真工具建立数字频率合成器DDS的仿真模型,便于我们直截了当地了解DDS的工作原理和各局部模块的功能,而且便于我们分析DDS的工作性能和各种参数指标。1. 实验背景随着技术和器件水平的提高,称之为直接数字式频率合成器DDS新的频率合成技术得到飞速的开展。DDS在相对带宽频率转换时间相位连续性正交输出高分辨力以及集成化等一系列指标方面,已远远超过了传统的频率合成器所到达的水平,完成了频率合成技术的又一次飞跃。DDS与传统的DS和IS一起构成了现代频率合成技术体系,将频率合成技术推向了一个新的阶段。2. DDS的原理:数字频率合成是从相

2、位概念出发直接合成所需波形的一种新技术,它采用一个恒定的输入参数时钟,通过数据处理的方式产生频率相位可调的输出信号。DDS系统由相位累加器波形ROMD/A转换器和低通滤波器构成。它具有频率分辨率高频率切换时相位连续等优点。DDS是继直接合成技术和锁相环式频率合成技术之后的第三代频率合成技术。他的工作原理是基于相位与幅度的对应关系,通过改变频率控制字K来改变相位累加器位数为N的相位累加速度,然后在固定时钟的控制下取样,取样得到的相位值去取相位累加器的高M位通过相位幅度转换得到与相位值对应的幅度序列,幅度序列通过数模转换及低通滤波得到正弦波输出。下列图为DDS的原理图。图1 DDS原理框图其中,K

3、为频率控制字,为基准时钟频率,N为相位累加器的字长,D为ROM数据位及D/A转换器的字长。相位累加器在基准时钟的控制字下以步长K做累加,把相加后的结果送至相位累加器的输入,相位累加器一方面在上一时钟周期作用后产生的新的想位数据反应到自身的输入端,在下一个时钟的作用下继续与频率控制数据K相加,另一方面将这个值作为取样地址输出,送入正弦查找表ROM,作为波形ROM的地址,对波形ROM进展寻址。波形ROM输出D位的幅度码S(n)经D/A转换器变成阶梯波S(t),再经过低通滤波器平滑后就可以得到合成的信号波形。合成的信号波形取决于波形ROM中存放的幅度码,因此用DDS可以产生任意波形。(1) 频率预置

4、与调节K被称之为频率控制字,也叫相位增量。DDS方程为,为输出频率,为时钟频率,当K=1时,DDS输出最低频率也即频率分辨率为/,而DDS的最大输出频率由Nyquist采样定理决定,即/2,也就是说K的最大值为-1。因此只要N足够大,DDS可以得到很细的频率间隔。要改变DDS的输出频率,只要改变频率控制字K即可。(2) 累加器图2 累加器框图相位累加器由N位加法器和N位存放器级联构成,来一个时钟脉冲,加法器将控制字K与存放器输出的累加相位相加,再将相加后的结果送入存放器的数据输入端。存放器将加法器在上一个时钟作用后产生的相位数据反应到加法器的输入端,使加法器在下一个时钟作用下继续与频率控制字进

5、展相加。这样,相位累加器在时钟的作用下进展相位累加。当相位累加器加满时产生一次溢出,完成一个周期性的动作。(3) 波形存储器用累加器输出的数据作为波形存储器的取样地址,进展波形的相位幅值转化,即可在给定的时间上确定波形的抽样幅值。N位的寻址ROM相当于把的正弦信号离散成具有个样本值的序列,假设波形ROM有D位数据,那么2N个样值的幅值以D为二进制数值固化在ROM中,按照地址的不同可以输出相应正弦信号的幅值。相位幅度变化原理图如下所示:图3 相位幅度变化原理图(4) D/A转换器D/A转换器的作用是把合成的正弦波数字量转换为模拟量。正弦幅度量化序列Sn经过D/A转换后变成了包络为正弦的阶梯波St

6、。需要注意的是频率合器对D/A转换器的分辨率有一定要求,D/A转换器的分辨率越高,合成的正弦波S(t)台阶数就越多,输出波形的精度也就越高。(5) 低通滤波器对D/A输出阶梯波St进展频谱分析,可知St中除主频外,还存在分布在,2两边处的非谐波分量,幅值包络为辛格函数。因此为了去除主频,必须在D/A转化器的输出端接入截止频率为/2的低通滤波器。一、 DDS性能DDS的频率合成原理及实现技术与传统的直接合成DS的锁相合成完全不同,在性能上也很独特。1. 相对宽度当频率控制字K=1时,最低输出频率为=/M,式中M=2N,当累加器字长N很大时,最低输出频率达Hz,mHz量级都是不困难的,可认为DDS

7、的最低合成频率接近于零频。DDS的最高输出频率受限于时钟频率和采样定理,=/2。在实际应用中,考虑到输出滤波器的非理想特性,一般采用=40%。这样的DDS的相对带宽为=M40%=40%2. 频率分辨率DDS的最小频率步进量就是它的最低输出频率,即=。也可以采用十进制的相位累加器,那么M=10N。可见只要累加器有足够的字长,实现非常精细的分辨率也没有多大的苦难,正像前面介绍的一样,可达HzmHz甚至Hz频率步进量。是传统频率合成技术所无可到达的。3. 频率转换时间DDS的频率转换时间近似认为是即时的,这是因为它的相位序列在时间上是离散的。在频率控制字K改变以后,要经一个时钟周期之后才能按新的相位

8、增量累加,所以可以说它的频率转换时间就是频率控制字的传输时间,即一个时钟周期=。目前,集成DDS产品的频率转换时间可达10ns的量级。这是常用锁相频率合成所无法到达的。4. 频率转换时的相位连续性当频率控制字从K1变为K2之后,它是在已有的累加相位nK1之上,再每次累加K2,相位函数的曲线是连续的,只是在改变频率瞬间其斜率发生了突变,因而保持了输出信号相位的连续性。这一点对利用相位信息的那些系统很重要。相位连续可防止信息的丧失,相位不连续会导致频谱的扩散,不利于频谱资源的有效利用。5. 可输出正交信号有些应用场合要用到正交信号输出,即同时输出S1(t)=sin(2t)和S2(t)=cos(2t

9、)在DDS中,只要分别在两个ROM中存储和两个函数表,即可同时输出正交信号,实现框图如下列图所示。图4 可输出正交信号的DDS框图6. 可输出任意波形假设在ROM中存储其他所需的波形函数表,DDS即可输出相应的周期性的波形,因此,更新ROM中的数据,使DDS输出方波三角波锯齿波等等。7. 调制性能由于DDS是全数字的,用频率控制字K可直接调整输出信号的频率与相位,所以很易于在DDS上实现数字调制和调相,很多DDS产品都具有数字调制功能。8. 噪声和杂散因为DDS是数字技术,先构成离散信号,再变换成模拟信号输出,因而噪声与杂散的存在是必然的。这是我们要特别关注的,以下对影响DDS输出的杂散来源进

10、展分析。3. 杂散分类及其影响1. 相位截断对输出信号频谱的影响在实际应用中,为了提高频率分辨率,相位累加器的位数N尽量做得大,这就要求ROM的容量很大。当N=32时,就需要ROM的容量达4GB,这在实现上是很困难的。一般都是用相位序列的高A位寻址ROM,舍去相位序列的低B=N-A位。这就引入了相位截断误差。以下的分析设K和互质。当它们有公约数时,可以先化简,然后可归于以下模型或理想信号模型:(n)是周期为=的阶梯波,其中,k=K mod。(n)可以看作是对周期为的锯齿波e(t)的采样,即,如图5所示。虚线表示锯齿波e(t),实线表示相位截断误差信号(t)。图5 (n)与e(t)关系锯齿波e(

11、t)的频谱为:其中,x=,R=K mod 为阶梯波的梯度。经过ROM 相位幅度转换后输出的信号波形序列为:因为(n),所以有:由相位舍位引起的输出误差信号为:把S(n)看作对连续信号的采样:sin(20t)的频谱为(-0) -(+0),e(t)的频谱E()如上述,所以e(t)Sin(20t)的频谱为二者的频域卷积:误差信号St的频谱为的周期延拓:误差信号经过D/A 后的模拟信号表达式为S0(t)=S( t)h(t),所以最终输出的误差信号频谱为S0()=S()H(),H()对信号频谱的影响是一个SINC 函数的幅度调制,对谱线的位置分布没有影响,从信号的频谱构造角度可以把它带来的影响忽略。由上

12、式可以得出,相位截断效应带来的频谱杂散位于:, 可见,有相位截断的DDS 输出信号频谱杂散分量十分丰富,并且有大量的频率值落在0,f0之间,从理论上也无法将其完全滤掉。由的表达式还可以发现,它和频率控制字K有关,不同的输出频率其频谱构造也会不同,这就为提高信号质量增加了困难。2. 幅度量化误差对输出信号频谱的影响ROM 数据位宽的有限使得DDS 输出的信号为阶梯波。这将对输出信号引入幅度量化误差(n)。设ROM 数据位宽为D,不考虑相位截断效应,幅度量化误差表示为:由取整函数in t()的性质可知,误差函数(n)是一个位于区间,上的随机序列,概率密度服从均匀分布,幅度量化对信号频谱的影响可以归

13、于白噪声。但是当K 和成整数比例关系时,由噪声信号表达式可知,多个周期的噪声具有重复性,因此噪声分布也具有一定的周期性。3. D/A 非理想特性及参考时钟相位噪声对输出信号频谱的影响D/A 的非理想特性主要包括动态非线性、静态非线性、有限分辨率及部闪烁噪声等。D/A 的非理想特性难于建模,不同的器件性能各异,只能根据具体的器件参数分别考虑。而且D/A 对输出信号频谱的影响跟相位截断效应和幅度量化误差比起来是很小的。只有在对信号频谱质量要求非常高的应用中才根据具体情况对这个问题进展深入的研究。这也是为什么在DDS 技术开展的二十多年间,对这个问题的研究不是很多。随着电子制作工艺的迅猛开展,D/A

14、 期间的非理想特性逐渐得到改善,一般可以通过选用高性能的D/A 器件来满足应用的要求。参考时钟的相位噪声会传递到输出信号中去。DDS 实际上可以看作一个分频器。从理论上来说,输出信号的相位噪声会对参考时钟的相位噪声有dB的改善。在对DDS 信号频谱作理论分析时,这些都不是主要的研究对象,但是在实际应用中,尤其是在对信号质量有苛刻要求的场合,这些因素的影响必须引起重视。4. MATLAB仿真和结果分析4.1 仿真参数的设置本次设计的要求为输出频率为1MHz,相位累加器的位数N=10,并调N和频率控制字K的值分析相位截断误差等各类误差的变化。根据理想DDS的频谱图如图6所示可知杂散分量对输出信号质

15、量影响最为严重。当趋近于时,也趋向于,两者很难区分,信号质量无法保证。为了使低通滤波器有效地滤除杂散,一般小于。因此在此我们分别取、12MHz、16MHz对结果作比拟。由公式算得取整后的K分别为128、85、 64。图6 理想DDS输出的频构造4.2 仿真结果4.2.1 K参数的影响研究为了直观的比拟相位截断前后的波形时域和频域上的差异,以下用A=4来模拟ROM寻址的相位序列的高4位。在不同时钟频率和频率控制字K下阶段前后的时域和频域图如下列图所示。1234567891011图7 仿真结果从图7中可以看到,当输出频率和累加器位数N一定时,频率控制字越小波形更加平滑,这是因为当N位一定时,ROM

16、中的存储的幅度值位个,累加器每次累加步长为K,因此一周期ROM的采样数据数为floor()个floor为Matlab求整函数,求向零靠近的整数,由此可见K越小,一周期门采样值越多,波形完整性越强,这结论跟实验结果完全符合。再次我们可以看到当累加器低N-M位被截取后,波形的完整性进一步恶化,这是因为当K一定时,ROM实际被采样到数据数为floor()个,显然比没被截断前少,导致波形平滑度降低。以上实验得出的时域波形中,更加直观的看出相位阶段带来的额外量化误差。4.2.2 N参数的影响研究为了分析相位累加器位数N对输出波形的影响,我们分别取N=8 、10、12作为一组比拟系。以下为本次实验结果。M

17、=4,K=63,(1)(2)(3)(4)(5)(6)(7)(8)图8 不同N下的DDS输出由图81,5可以看出,当N比拟小时,输出波形有由明显的低频分量,而且波形更接近于三角波,这是因为N=8时,一个周期采样数据数为,因此引起明显的量化误差。以上信号是未通过低通滤波其处理的,因此由6更直观地看到从D/A出来的模拟信号是在DDS原理中介绍的阶梯波S(t)。从频谱的分析来看,相位阶段前后的频谱由明显的杂散分量的参加,而且,随N的减小而增多。综上,在实际DDS设计中,相位累加器的位数N要尽可能的取大,以此降低幅度量化带来的误差。但N越大需要的ROM存储空间越大,实际中很难实现。因此ROM压缩技术和截

18、断误差的降低技术是DDS设计中的关键问题所在。4.2.3 功率谱分析以下列图中1、3分别为N=10和N=12时的有量化误差的信号功率谱图。当N从10变到12时,那么信号功率与量化噪声总功率之比下降约12dB。这是因为当ROM 采用D位二进制数保存正弦函数值时, 量化误差为:其中, Rx表示对x做最靠近x 的取整运算。显然,与S(n)有一样的序列周期 , 因此幅度量化误差在频谱中没有引入新的杂散成分, 而是表现为均匀的噪声基底。通常在一个周期, 被认为是在间均匀分布的噪声, 那么由量化引起的信噪比为:由上式可见, 量化位数D每增加一位, 那么SNR将提高6dB。1234图9 DDS杂散功率谱从图

19、9的2,4中的频域图比拟中可以看到,处理截断后的误差信号也成周期出现,对此在截断误差的表达式中,为周期=的阶梯波,其中为K和的最大公约数。由数字信号处理理论易知的谱线以为周期,在区间0,的谱线由根谱线所组成,这个结论跟实验结果吻合。5. 附录1) DDS实现及分析相位截断前后的波形及频谱的代码:clear all; N=12; %累加器的位数; K=63; %fix(2N)*0.222);%频率控制字,即累加的步长; M=6; %截取累加器的高10位; D=8; %8bit DAC g=gcd(K,2N); pe=2N/(g); n=1:pe; pp=pe+1; %频谱分析点数 add_y=m

20、od(n*K,2N); %累加器的输出表达式; error=mod(n*K,2(N-M); rom_x=sin(2*pi*add_y/(2N); rom_y=sin(2*pi*(add_y-error)/(2N); Fs=16*106; %采样频率 %此时的相位增量为2*pi*K/MTs=1/Fs; %采样频率t=(0:pe-1)*Ts;%t=(0:Nd-1)*Ts; %根据需要输出的信号点数,取得时间plot(t,rom_x);xlabel(t/s);ylabel(A);title(N=,num2str(N),截断前的时域图);grid on;Fy=abs(fft(rom_x,4*pe);

21、%对信号进展傅里叶变换len_Fy=length(Fy); %此处的数字角频率f=(0:len_Fy)/len_Fy*Fs; %输出信号的频率,将数字频率转换成模拟频率W=2*pi*f/fscount=floor(len_Fy/2); %频谱显示的点数figure %显示多幅图像plot(f(1:count),Fy(1:count);grid on;xlabel(f/Hz);ylabel(A);title(N=,num2str(N),截断前的频域图);figureplot(t,rom_y);xlabel(t/s);ylabel(A);title(N=,num2str(N),截断后的时域图);g

22、rid on;Fy=abs(fft(rom_y,4*pe); %对信号进展傅里叶变换len_Fy=length(Fy); %此处的数字角频率f=(0:len_Fy)/len_Fy*Fs; %输出信号的频率,将数字频率转换成模拟频率W=2*pi*f/fscount=floor(len_Fy/2); %频谱显示的点数figure %显示多幅图像plot(f(1:count),Fy(1:count);grid on;xlabel(f/Hz);ylabel(A);title(N=,num2str(N),截断后的频域图);2分析相位截断误差和幅度量化误差的功率谱的代码clear all; N=10; %

23、累加器的位数; K=63; %(2N)*0.222);%频率控制字,即累加的步长; M=4; %截取累加器的高10位; D=8; %8bit DAC g=gcd(K,2N); pe=2N/(g); n=1:pe; fc=16*106; pp=pe+1; %频谱分析点数 add_y=mod(n*K,2N); %累加器的输出表达式; error=mod(n*K,2(N-M); rom_y=cos(2*pi*(add_y-error)/(2N); %相位到幅度映射的输出; pat = - 1 + 1/ (2 (D - 1) ):1/ (2 (D - 1) ):1 - 1/ (2 (D -1) );

24、%设定量化区间 codebook = - 1 + 1/ (2D):1/ (2(D - 1) ) :1 - 1/ (2D); %设定量化码本值 Pyy,wy=periodogram(rom_y,onesided,pp,fc); figure;%figure1 只有相位截断,没有量化 figure1 psdplot(Pyy/max(Pyy),wy);% 归一化显示出图; rom_x=cos(2*pi*add_y/(2N); index,quants2 = quantiz(rom_x,pat,codebook);%量化 Pzz,wz=periodogram(quants2,onesided,pp,f

25、c); title(N=,num2str(N),有相位截断误差的信号); figure;%没有相位截取和的非线性等,2,只有量化 psdplot(Pzz/max(Pzz),wz);% 归一化显示出图; index,quants1 = quantiz(rom_y,pat,codebook);%量化 Pxx,wx=periodogram(quants1,onesided,pp,fc); %频谱分析;title(N=,num2str(N),有幅度量化杂散的信号); figure; %3 相位截断加量化 psdplot(Pxx/max(Pxx),wx);% 归一化显示出图;title(N=,num2str(N),有幅度量化和相位截断误差的信号); grid on- - word.zl-

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服