资源描述
一次函数几何专题综合训练1
一次函数与几何图形综合训练
如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足.
(1)求直线AB的解析式;
(2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;
(3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.
如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1。
(1)求直线BC的解析式:
(2)直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由?
(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。
如图,直线AB交X轴负半轴于B(m,0),交Y轴负半轴于A(0,m),OC⊥AB于C(-2,-2)。
(1) 求m的值;
(2) 直线AD交OC于D,交X轴于E,过B作BF⊥AD于F,若OD=OE,求的值;
(3) 如图,P为x轴上B点左侧任一点,以AP为边作等腰直角△APM,其中PA=PM,直线MB交y轴于Q,当P在x轴上运动时,线段OQ长是否发生变化?若不变,求其值;若变化,说明理由。
在直角坐标系中,B、A分别在x,y轴上,B的坐标为(3,0),∠ABO=30°,AC平分∠OAB交x轴于C;
(1) 求C的坐标;
(2) 若D为AB中点,∠EDF=60°,证明:CE+CF=OC
(3) 若D为AB上一点,以D作△DEC,使DC=DE,∠EDC=120°,连BE,试问∠EBC的度数是否发生变化;若不变,请求值。
如图,直线AB交x轴正半轴于点A(a,0),交y 轴正半轴于点B(0, b),且a 、b满足 + |4-b|=0
(1)求A、B两点的坐标;
(2)D为OA的中点,连接BD,过点O作OE⊥BD于F,交AB于E,求证∠BDO=∠EDA;
(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y 轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.
A
B
O
D
E
F
y
x
A
B
O
M
P
Q
x
y
如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),
∠BAO=30°.
(1)求AB的长度;
(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE.
(3)在(2)的条件下,连结DE交AB于F.求证:F为DE的中点
展开阅读全文