收藏 分销(赏)

高等数学D82偏导数.pptx

上传人:快乐****生活 文档编号:4496383 上传时间:2024-09-25 格式:PPTX 页数:20 大小:828.33KB
下载 相关 举报
高等数学D82偏导数.pptx_第1页
第1页 / 共20页
高等数学D82偏导数.pptx_第2页
第2页 / 共20页
高等数学D82偏导数.pptx_第3页
第3页 / 共20页
高等数学D82偏导数.pptx_第4页
第4页 / 共20页
高等数学D82偏导数.pptx_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、第二节机动 目录 上页 下页 返回 结束 一、一、偏导数概念及其计算偏导数概念及其计算二二、高阶偏导数、高阶偏导数 偏 导 数 第八章 一、一、偏导数定义及其计算法偏导数定义及其计算法引例引例:研究弦在点 x0 处的振动速度与加速度,就是中的 x 固定于求一阶导数与二阶导数.x0 处,关于 t 的机动 目录 上页 下页 返回 结束 将振幅定义定义1.在点存在,的偏导数,记为的某邻域内则称此极限为函数极限设函数机动 目录 上页 下页 返回 结束 注意注意:同样可定义对 y 的偏导数若函数 z=f(x,y)在域 D 内每一点(x,y)处对 x则该偏导数称为偏导函数,也简称为偏导数偏导数,记为机动

2、目录 上页 下页 返回 结束 或 y 偏导数存在,例如例如,三元函数 u=f(x,y,z)在点(x,y,z)处对 x 的偏导数的概念可以推广到二元以上的函数.机动 目录 上页 下页 返回 结束 偏导数定义为(请自己写出)二元函数偏导数的几何意义二元函数偏导数的几何意义:是曲线在点 M0 处的切线对 x 轴的斜率.在点M0 处的切线斜率.是曲线机动 目录 上页 下页 返回 结束 对 y 轴的函数在某点各偏导数都存在,显然例如例如,注意:注意:但在该点不一定连续不一定连续.上节例 目录 上页 下页 返回 结束 在上节已证 f(x,y)在点(0,0)并不连续!例例1.求解法解法1:解法解法2:在点(

3、1,2)处的偏导数.机动 目录 上页 下页 返回 结束 例例2.设证证:例例3.求的偏导数.解解:求证机动 目录 上页 下页 返回 结束 偏导数记号是一个例例4.已知理想气体的状态方程求证:证证:说明说明:(R 为常数),不能看作分子与分母的商!此例表明,机动 目录 上页 下页 返回 结束 整体记号,二、高阶偏导数二、高阶偏导数设 z=f(x,y)在域 D 内存在连续的偏导数若这两个偏导数仍存在偏导数,则称它们是z=f(x,y)的二阶偏导数.按求导顺序不同,有下列四个二阶偏导机动 目录 上页 下页 返回 结束 数:类似可以定义更高阶的偏导数.例如,例如,z=f(x,y)关于 x 的三阶偏导数为

4、z=f(x,y)关于 x 的 n 1 阶偏导数,再关于 y 的一阶机动 目录 上页 下页 返回 结束 偏导数为例例5.求函数解解:注意注意:此处但这一结论并不总成立.机动 目录 上页 下页 返回 结束 的二阶偏导数及 例如例如,二者不等机动 目录 上页 下页 返回 结束 例例6.证明函数满足拉普拉斯证:证:利用对称性,有方程机动 目录 上页 下页 返回 结束 则证明 目录 上页 下页 返回 结束 定理定理.例如例如,对三元函数 u=f(x,y,z),说明说明:本定理对 n 元函数的高阶混合导数也成立.函数在其定义区域内是连续的,故求初等函数的高阶导数可以选择方便的求导顺序.因为初等函数的偏导数仍为初等函数,当三阶混合偏导数在点(x,y,z)连续连续时,有而初等(证明略)内容小结内容小结1.偏导数的概念及有关结论 定义;记号;几何意义 函数在一点偏导数存在函数在此点连续 混合偏导数连续与求导顺序无关2.偏导数的计算方法 求一点处偏导数的方法先代后求先求后代利用定义 求高阶偏导数的方法逐次求导法(与求导顺序无关时,应选择方便的求导顺序)机动 目录 上页 下页 返回 结束 备用题备用题 设方程确定 u 是 x,y 的函数,连续,且求解解:机动 目录 上页 下页 返回 结束

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服