资源描述
七年级数学上册1.1生活中的图形同步试卷【可编辑】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )
A . B . C . D .
2、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )
A .46米2 B .37米2 C .28米2 D .25米2
3、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )
A . B . C . D .
4、下面几种图形:①三角形,②长方形,③立方体,④圆,⑤圆锥,⑥圆柱.其中属于立体图形的有( )
A .1个 B .2个 C .3个 D .4个
5、一个物体的外形是长方体(如图(1)),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )
A .圆柱 B .球 C .圆锥 D .圆柱或球
6、有一个棱长为5的正方体木块,从它的每一个面看都有一个穿透的完全相同的孔(如图中的阴影部分),则这个立体图形的内、外表面的总面积是 ( )
A .192 B .216 C .218 D .225
7、下列几何图形中为圆锥的是( ).
A . B . C . D .
8、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
9、电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
10、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )
A .3个 B .4个 C .5个 D .6个
11、如图,将直角三角形绕其斜边旋转一周,得到的几何体为( )
A . B . C . D .
12、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
13、下列几何体中,含有曲面的有( )
A .1个 B .2个 C .3个 D .4个
14、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
15、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )
A .1 B .2 C .3 D .6
16、与易拉罐类似的几何体是( )
A .圆锥 B .圆柱 C .棱锥 D .棱柱
17、将下列平面图形绕轴旋转一周,能得到图中所示立体图形的是( )
A . B . C . D .
二、填空题(每小题2分,共计40分)
1、如图,长方形 的长 为 ,宽 为 ,将长方形绕 边所在直线旋转后形成的立体图形的体积是 .
2、笔尖在纸上写字说明 ;车轮旋转时看起来像个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明 .
3、将一个半圆绕它的直径所在的直线旋转一周得到的几何体是 .
4、在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是 .(结果保留π)
5、如图中的几何体有 个面,面面相交成 线.
6、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 .
7、如图所示为8个立体图形.
其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 .
8、如图,一个正方体形状的木块,棱长为2米,若沿正方体的三个方向分别锯成3份、4份和5份,得到若干个大大小小的长方体木块,则所有这些长方体木块的表面积和是 平方米.
9、下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形 .
10、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是 .
11、如图,三棱柱的底面边长都为2 cm,侧棱长为5 cm,则这个三棱柱的侧面展开图的面积为 .
12、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明 .(填“点动成线”,“线动成面”或“面动成体”)
13、某种商品的外包装箱是长方体,其展开图的面积为430平方分米(如图),其中BC=5分米,EF=10分米,则AB的长度为 分米.
14、飞机表演的“飞机拉线”用数学知识解释为 ,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了 .
15、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为 cm2.
16、铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是 .
17、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为 .
18、流星划过天空时留下一道明亮的光线,用数学知识解释为 .
19、六个长方体包装盒按“规则方式”打包,所谓“规则方式”是指每相邻两个长方体必须以完全一样的面对接,最后得到的形状是一个更大的长方体,已知每一个小包装盒的长宽高分别为 5、4、3 则按“规则方式”打包后的大长方体的表面积最小是 .
20、如图,长方形的长为3cm,宽为2cm,以该长方形较短的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为 cm3.(结果保留π)
三、计算题(每小题2分,共计6分)
1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
四、解答题(每小题4分,共计20分)
1、如图,一个正五棱柱的底面边长为2cm,高为4cm.
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.
2、图中的几何体是由几个面所摆成的?面与面相交成几条线?它们是直的还是曲的?
3、如图,OA,OB,OC是圆的三条半径.
(1)若他们的圆心角度数比为1:2:3,求这三个扇形的圆心角的度数.
(2)在(1)的条件下,若圆的半径为2cm,求这三个扇形的面积.(保留π)
4、如果一个棱柱一共有12顶点,底边长是侧棱长的一半,并且所有的棱长的和是120cm,求每条侧棱的长.
5、如图,某玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,已知喷涂1dm2需用油漆59克,求喷涂这个玩具共需多少克油漆?
展开阅读全文