收藏 分销(赏)

电力电子技术基础实验指导书gg范文.doc

上传人:天**** 文档编号:4457050 上传时间:2024-09-23 格式:DOC 页数:18 大小:147KB
下载 相关 举报
电力电子技术基础实验指导书gg范文.doc_第1页
第1页 / 共18页
电力电子技术基础实验指导书gg范文.doc_第2页
第2页 / 共18页
电力电子技术基础实验指导书gg范文.doc_第3页
第3页 / 共18页
电力电子技术基础实验指导书gg范文.doc_第4页
第4页 / 共18页
电力电子技术基础实验指导书gg范文.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、电力电子技术基础实验指导书gg152020年4月19日文档仅供参考电力电子技术基础实验指导书南昌大学信息工程学院电气与自动化实验中心目 录实验一 锯齿波同步移相触发电路实验.1实验二 单相桥式全控整流电路实验.3实验三 三相桥式全控整流电路实验.6实验四 直流斩波电路实验.8实验一 锯齿波同步移相触发电路实验一实验目的1加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。2掌握锯齿波同步触发电路的调试方法。二实验内容1锯齿波同步触发电路的调试。2锯齿波同步触发电路各点波形观察,分析。三实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见

2、“电力电子技术”教材。四实验设备及仪器1NMCL系列教学实验台主控制屏2NMCL-32组件和SMCL-组件3NMCL-05组件4双踪示波器5万用表五实验方法 图1-1 锯齿波同步移相触发电路1将NMCL-05面板左上角的同步电压输入接到主控电源的U、V端,“触发电路选择”拨向“锯齿波”。2. 将锯齿波触发电路上的Uct接着至SMCL-01上的Ug端,7端地。3合上主电路电源开关,并打开NMCL-05面板右下角的电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。观察“3”“5”孔波形及输出电压UG1K1的波形,

3、调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。4调节脉冲移相范围将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U1电压(即“1”孔)及U5的波形,调节偏移电压Ub(即调RP2),使a=180。调节NMCL-01的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,a=180,Uct=Umax时,a=30,以满足移相范围a=30180的要求。5调节Uct,使a=60,观察并记录U1U5及输出脉冲电压UG1K1,UG2K2的波形,并标出其幅值与宽度。用双踪示波器观察UG1K1和UG3K

4、3的波形,调节电位器RP3,使UG1K1和UG3K3间隔1800。六实验报告1整理,描绘实验中记录的各点波形。2总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?3如果要求Uct=0时,a=90,应如何调整?4讨论分析其它实验现象。5. 写出实验心得体会。 实验二 单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理。2研究单相桥式全控整流电路在电阻负载及电阻-电感性负载下的工作特性。3熟悉NMCL-05锯齿波触发电路的工作。二实验线路及原理参见图3-1三实验内容1单相桥式全控整流电路供电给电阻负载。2单相桥式全控整流电路供电给电阻-电感性负载。四实验设

5、备及仪器1NMCL-III教学实验台主控制屏2NMCL-32主控制屏3NMCL-05组件及SMCL-01或NMCL-314MEL-03A组件和NMCL-331多电感组件5NMCL-35和NMCL-33组件6双踪示波器7万用表五注意事项1本实验中触发可控硅的脉冲来自NMCL-05挂箱。2负载电阻调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。3电感的值可根据需要选择而且必须与电阻串联,需防止过大的电感造成可控硅不能导通。4NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连

6、线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30180),可尝试改变同步电压极性。5示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。六实验方法1将NMCL-05面板左上角的同步电压输入接NMCL-32的U、V输出端,“触发电路选择”拨向“锯齿波”。2单相桥式全控整流电路供电给电阻负载接上电阻负载(可采用两只900电阻并联),并调节电阻负载至最大,短接平波电抗器。合上主电路电源,调节Uct,测量在不同a角(30、60、90)时整流电路的输出电压Ud=f(t),晶闸管的端电压UVT=f(t)的波形,并记录相应a角时的输

7、出电压Ud和UVT的波形。若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。3单相桥式全控整流电路供电给电阻-电感性负载接上电路负载为阻感型,测量在不同控制电压Uct时的输出电压Ud=f(t),负载电流以及晶闸管端电压UVT=f(t)波形并记录相应Uct时的Ud、U2值。注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻,但负载电流不能超过0.8A,Uct从零起调。改变电感值,观察a=90,ud=f(t)、uVT=f(t)的波形,并加以分析。七实验报告1绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当a=30,60,90时的ud、uVT波形,并加以分析。

8、2绘出单相桥式晶闸管全控整流电路供电给电阻-电感性负载情况下,当a=30,60,90时的ud、uVT波形,并加以分析3写出实验心得体会。图3-1 单相桥式全控整流电路 实验三 三相桥式全控整流电路实验一实验目的1熟悉三相桥式全控整流电路的接线及工作原理。2了解集成触发器的调整方法及各点波形。二实验内容1三相桥式全控整流电路带纯电阻负载时的工作特性。2三相桥式全控整流电路带阻感负载时的工作特性。三实验线路及原理实验线路如图5-1所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲信号。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。四实验设备及仪器

9、1NMCL-III教学实验台主控制屏2NMCL-32主控制屏3NMCL-05组件及SMCL-01或NMCL-314MEL-03A组件和NMCL-331多电感组件5NMCL-35和NMCL-33组件6双踪示波器7万用表五实验方法1按图5-1接线,未上主电源之前,检查晶闸管的脉冲是否正常。(1)打开NMCL-32电源开关。(2)用示波器观察NMCL-33的脉冲观察孔,应有间隔均匀,相互间隔60的幅度相同的双脉冲。(3)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V-2V

10、的脉冲。注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。(5)将给定器输出Ug接至SMCL-01面板的Uct端,调节偏移电压Ub,在Uct=0时,使a=150。2三相桥式全控整流电路(1)带电阻负载按图5-1接线,将负载电阻R调至最大,合上主电源,调节Uct,使a在30150范围内,用示波器观察记录a=30、60、90时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值。(2)带电阻-电感负载调节Uct,使a在3090范围内,用示波器观察记录a=30、60、90时

11、,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值。六实验报告1画出电路的移相特性Ud=f(a)曲线2画出三相桥式全控整流电路分别在纯电阻负载时和阻感负载时,a角为30、60、90时的ud、uVT波形3实验心得体会。图5-1 三相桥式全控整流电路实验实验四 直流斩波电路实验一实验目的熟悉降压斩波电路(Buck Chopper)和升压斩波电路(Boost Chopper)的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。二实验内容1SG3525芯片的调试。2降压斩波电路的波形观察及电压测试。3升压斩波电路的波形观察及电压测试。三实验设备及

12、仪器1电力电子教学实验台主控制屏2NMCL-16组件3MEL-03A电阻箱 (900/0.41A) 或其它可调电阻盘4万用表5双踪示波器四实验方法1SG3525的调试。原理框图见图6-1。图6-1 PWM波形发生将扭子开关S1打向“直流斩波”侧,S2电源开关打向“ON”,将“3”端和“4”端用导线短接,用示波器观察“1”端输出电压波形应为锯齿波,并记录其波形的频率和幅值。扭子开关S2扳向“OFF”,用导线分别连接“5”、“6”、“9”,再将扭子开关S2扭向“ON”,用示波器观察“5”端波形,并记录其波形、频率、幅度,调节“脉冲宽度调节”电位器,记录其最大占空比和最小占空比。2实验接线图见图6-

13、2。图6-2 升压斩波电路(1)切断NMCL-16主电源,分别将“主电源2”的“1”端和“降压斩波电路”的“1”端相连,“主电源2”的“2”端和“降压斩波电路”的“2”端相连,将“PWM波形发生”的“7”、“8”端分别和降压斩波电路VT1的G1,S1端相连,“降压斩波电路”的“4”、“5”端串联MEL-03电阻箱 (将两组900/0.41A的电阻并联起来,顺时针旋转调至阻值最大约450),和直流安培表(将量程切换到2A挡)。(2)检查接线正确后,接通控制电路和主电路的电源(注意:先接通控制电路电源后接通主电路电源 ),改变脉冲占空比,每改变一次,分别观察PWM信号的波形,MOSFET的栅源电压

14、波形,输出电压u0波形的波形,记录PWM信号占空比D,ui、u0的平均值Ui和U0。(3)改变负载R的值(注意:负载电流不能超过1A),重复上述内容2。(4)切断主电路电源,断开“主电源2”和“降压斩波电路”的连接,断开“PWM波形发生”与VT1的连接,分别将“升压斩波电路”的“6”和“主电源2”的“1”相连,“升压斩波电路”的“7”和“主电源2”的“2”端相连,将VT2的G2和S2分别接至“PWM波形发生”的“7”和“8”端,升压斩波电路的“10”、“11” 端,分别串联MEL-03电阻箱(两组分别并联,然后串联在一起顺时针旋转调至阻值最大约900)和直流安培表(将量程切换到2A挡)。检查接

15、线正确后,接通主电路和控制电路的电源。改变脉冲占空比D,每改变一次,分别:观察PWM信号的波形,MOSFET的栅源电压波形,输出电压、u0波形,记录PWM信号占空比D,ui、u0的平均值Ui和U0。(5)改变负载R的值(注意:负载电流不能超过1A),重复上述内容4。(6)实验完成后,断开主电路电源,拆除所有导线。五注意事项:(1)“主电源2”的实验输出电压为15V,输出电流为1A,当改变负载电路时,注意R值不可过小,否则电流太大,有可能烧毁电源内部的熔断丝。(2)实验过程当中先加控制信号,后加“主电源2”。(3)做升压实验时,注意“PWM波形发生器”的“S1”一定要打在“直流斩波”,如果打在“半桥电源”极易烧毁“主电源2”内部的熔断丝。六实验报告1分析PWM波形发生的原理2记录在某一占空比D下,降压斩波电路中,MOSFET的栅源电压波形,输出电压u0波形,并绘制降压斩波电路的Ui/Uo-D曲线,与理论分析结果进行比较,并讨论产生差异的原因。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 应用文书 > 技术指导

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服