资源描述
小考总复习教学设计方案
教学设计方案
姓 名
学生姓名
上课时间
辅导科目
年级
六年级
课时
教材版本
人教
课题名称
比例的意义和基本性质
教学重点
比例的意义
教学难点
基本性质的应用
考点分析
1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。
2、表示两个比相等的式子叫做比例。
3、组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
4、在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。
典型例题
例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)
A B
C
(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。这两个长方形的长有什么关系?宽呢?
(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少?
例2、(根据指定的比,将图形按要求放大或缩小)
先按3:2的比画出长方形A放大后的图形B,再按1:2的比画出长方形A缩小后的图形C。(1)图B的长、宽各是几格?(2)图C呢?(3)观察这三幅图形,你有什么发现?
A
B
C
例3、(将两个相等比写成一个等式)
图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?比较写出的两个比,你有什么发现?
B
A
3厘米
6厘米
4厘米
8厘米
例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。
(1) 5 :6 和15 :18 (2) 0.2 :0.1 和 3 :1
3) : 和 1.2 :0.8 (4) 6 :2 和 :
例5、(比例的各部分名称和比例的基本性质)
一台织布机3小时织布3.6米,4小时织布4.8米。你能根据数量间的关系写出比例吗?
例6、(比例基本性质的应用)根据2 × 7 = 1.4 × 10这个等式写出几个比例
例7、(按比例放大的含义)
王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?
4厘米
5厘米
例8、(解比例)上图中宽是多少厘米?
课
后
记
学生课堂
亮 点
对学生或
家长建议
教学反思
学生家长签字
教务部门签章
模拟试题
1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是( )厘米,宽是( )厘米,这张图片( )不变,大小( )。
2、一块正方形的花手帕,边长10厘米,将其按( )的比放大后,边长变为30厘米。
3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。
4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
5、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是( )。
6、在比例里,两个( )的积和两个( )积相等。
7、如果A×3=B×5,那么A∶B= ( ) ∶ ( )。
8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:
( ) ∶ ( ) = ( ) ∶ ( )。
9、根据3×8 = 4×6写成的比例是( )、( )或( )。
10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是( )∶( )。
13、解比例
ⅹ∶3 = ∶ = ∶ = ∶x
∶ x = 3∶12 ∶ x = 5%∶0.6 =
14、 在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( )
参考答案:
1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是( 4 )厘米,宽是( 3 )厘米,这张图片( 形状 )不变,大小( 变了 )。
2、一块正方形的花手帕,边长10厘米,将其按( 3 : 1 )的比放大后,边长变为30厘米。
3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。
4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
(1) 因为6 :10 = ,9 :15 = ,所以6 :10 = 9 :15。
(2) 因为20 :5 = 4,4 :1 = 4,所以20 :5 = 4 :1。
(3) 因为5 :1 = 5,6 :2 = 3,所以5 :1 和 6 :2不能组成比例。
5、在2∶5、12∶0.2、31∶15 三个比中,与5.6∶14 能组成比例的一个比是(2∶5 )。
6、在比例里,两个( 外项 )的积和两个( 内项 )积相等。
7、如果A×3=B×5,那么A∶B= ( 5 ) ∶ ( 3 )。
8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:
( 6 ) ∶ ( 24 ) = ( 5 ) ∶ ( 20 )。 6×20 = 24×5 可组成8个比例
9、根据3×8 = 4×6写成的比例是( 3 :4 = 6 :8 )、( 3 :6 = 4 :8 )或( 4 :3 = 8 :6 )。可组成8个比例
10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是( 3 )∶( 1 )。
解:设平行四边形的高是ⅹ厘米。
36 : 24 = 24 : ⅹ
36ⅹ = 24 × 24 ┈┈ 根据比例的基本性质
36ⅹ = 576
ⅹ = 16
答:平行四边形的高是16厘米。
解:设梯形的上底是ⅹ厘米,高是Y厘米。
18 : 27 = 10 : ⅹ 18 : 27 = 12 : Y
18ⅹ = 27 × 10 18 Y = 27 × 12
18ⅹ = 270 18 Y = 324
ⅹ = 15 Y = 18
答:梯形的上底是15厘米,高是18厘米。
13、解比例
ⅹ∶3 = ∶ = ∶ = ∶x
ⅹ = ⅹ = 1.6 ⅹ = 1.2
∶ x = 3∶12 ∶ x = 5%∶0.6 =
ⅹ = 3 ⅹ = 4.5 ⅹ = 0.26
14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( 3 )。
展开阅读全文