1、七年级专项练习专项练习(一)1符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,(2)f( 1 /2 )=2,f( 1 /3 )=3,f( 1/ 4 )=4,f( 1/ 5 )=5,利用以上规律计算f( 1/2014 )-f(2015)结果是()A-1 B0 C1 D不能确定2小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16,根据以上规律可知第10个式子左起第一个数是 3观察如图的图形,它们是按一定规律排列的,依照此规律
2、,第100个图形共有 5050个五角星4如图,OM是AOC的平分线,ON是BOC的平分线(1)如图1,当AOB=90,BOC=60时,MON的度数是多少?为什么?(2)如图2,当AOB=70,BOC=60时,MON= 35(直接写出结果)(3)如图3,当AOB=,BOC=时,猜想:MON= (直接写出结果)5如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成图中,第1个黑色“”形由3个正方形组成,第2个黑色“”形由7个正方形组成,那么组成第n个黑色“”形的正方形个数是 4n-1(用含n的代数式表示)6如图第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第l个图案
3、经过平移而得,那么第7个图案中有白色地面砖 块7一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()A2010B2011C2012D20138如图长方形MNPQ是菜市民健身广场的平面示意图,它是由6个正方形拼成的长方形,中间最小的正方形A的边长是1,观察图形特点可知长方形相对的两边是相等的(如图中MN=PQ)正方形四边相等请根据这个等量关系,试计算长方形MNPQ的面积,结果为 9将正整数按如图所示的规律排列下去,若用整数对(m,n)表示第m排,从左到右第n个数,如(4,3)表示整数9,则(8,4)表示整数是 10用火柴棒按下面的方式搭
4、图形,搭第1个图形需要7根火柴棒,搭第2个图形需要12根火柴棒,搭第3个图形需要17根火柴棒,照这样的规律搭下去,搭第n个图形需要的火柴棒的根数是()A5n-2B5n+1C5n+2D5n+311小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是()ABCD12下面是小马虎解的一道题题目:在同一平面上,若BOA=70,BOC=15,求AOC的度数 解:根据题意可画出图AOC=BOA-BOC=70-15=55AOC=55若你是老师,会判小马虎满分吗?若会,说明理由若不会,请将小马虎的错误指出,并给出你认为正确的解法13如图,AOB为直角,AOC为锐角,且O
5、M平分BOC,ON平分AOC(1)如果AOC=50,求MON的度数(2)如果AOC为任意一个锐角,你能求出MON的度数吗?若能,请求出来,若不能,说明为什么?14计算与说理(1)如图1线段AB,C是线段AB的中点,点D在CB上,且AD=6.5cm,DB=1,5cm,则线段CD= 2.5cm(2)如图2,O为直线AB上一点,AOC=50,OD平分AOC,DOE=90求出BOD的度数;OE是BOC的平分线吗?为什么?15结合数轴与绝对值的知识回答下列问题:(1)探究:数轴上表示5和2的两点之间的距离是 3数轴上表示-2和-6的两点之间的距离是 数轴上表示-4和3的两点之间的距离是 (2)归纳:一般
6、的,数轴上表示数m和数n的两点之间的距离等于|m-n|(3)应用:如果表示数a和3的两点之间的距离是7,则可记为:|a-3|=7,那么a= 若数轴上表示数a的点位于-4与3之间,求|a+4|+|a-3|的值当a取何值时,|a+4|+|a-1|+|a-3|的值最小,最小值是多少?请说明理由16如图:点O为直线AB上的点,过点O作射线OC,将一直角三角板的直角顶点放在O处,一边OM在射线OB上,另一边ON在AB的下方(1)将图中三角板绕点O逆时针旋转至图,使一边OM在BOC的内部,且恰好平分BOC,问ON所在的直线是否平分AOC?并说明理由(2)若BOC=120,将图中的三角板绕点O按每秒5的速度
7、沿逆时针旋转一周,在旋转过程中,第几秒时直线ON恰好平分AOC?17如图是个长为2m,宽为n的长方形(mn),沿图中虚线用剪刀分成四块小长方形,然后按图的性状拼成一个正方形(1)图中阴影部分的正方形的边长是多少?(用代数式表示) (2)观察图写出下列三个代数式:(m+n)2,(m-n)2,mn之间的等量关系(3)若m+n=7,mn=6,求m-n18如图,点O是数轴的原点,且数轴上的点A和点B对应的数分别为-1和3,数轴上一动点P对应的数为x(1)请根据题意填空:线段OA的长度是 1,线段OB的长度是 ,线段AB的长度是4 ,若点P到点A和点B的距离相等,则点P对应的有理数x的值是 1(2)当点
8、P以每分钟2个单位长度的速度从原点O向左运动的同时,点A以每分钟3个单位长度的速度向左运动,点B以每分钟5个单位长度的速度向左运动,它们同时出发,求多少分钟时,点P到点A和点B的距离相等如果设t分钟时点P到点A和点B的距离相等:请你用含t的式子表示:此时,在数轴上点A对应的数是 -1-3t,点B对应的数是 3-5t,点P对应的数是-2t ,线段PA=t+1 请你求出t的值专项练习(二)19【现场学习】现有一个只能直接画31角的模板,小英同学用这个模板画出了25的角,他的画法是这样的:(1)如图1,用模板画出AOB=31;(2)如图2,再继续画出BOC=31;(3)如图3,再继续依次画出3个31
9、的角;(4)如图4,画出射线OA的反向延长线OG,则FOG就是所画的25的角【尝试实验】请你也用这个模板画出6的角,并标明相关角度,指明结果【实践探究】利用这个模板可以画出12的角吗?如果不可以,说出结论即可;如果可以,请你画出这个角,并说明理由20阅读下列材料:让我们来规定一种运算: abcd=ad-bc,例如2345=25-34=10-12=-2 , 再如:x214=4x-2 按照这种运算的规定:请解答下列各个问题:(1)13-21=7 (只填最后结果);(2)求x的值,使xx-332=0(写出解题过程)21如图1,已知AOC=m,BOC=n且m、n满足等式|3m-420|+(2n-40)
10、=0,射线OP从OB处绕点0以4度/秒的速度逆时针旋转(1)试求AOB的度数;(2)如图l,当射线OP从OB处绕点O开始逆时针旋转,同时射线OQ从OA处以l度/秒的速度绕点0顺时针旋转,当他们旋转多少秒时,使得POQ=10?(3)如图2,若射线OD为AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在DOC的内部)时,且 COEDOE+BOC= 45 试求x22【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保经测试,一个人操作该采棉机的采摘效率
11、为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍张家雇人手工采摘,王家所雇的人中有 13 的人自带采棉机采摘,23 的人手工采摘两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元王家这次采摘棉花的总重量是多少?23“囧”(jiong)是网络流行语,像
12、一个人脸郁闷的神情如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分)设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y(1)用含有x、y的代数式表示右图中“囧”的面积;(2)当x=3,y=6时,求此时“囧”的面积24问题引入:小明坐在第2排第第3列,可以用两个有顺序的数字表示为:(2,3)小亮坐在第3排第4列,可以用两个有顺序的数字表示为:(3,4)则小丽坐在第a排第b列,可以用两个有顺序的数字表示为: (a,b)(a,b)由此可知,用两个有顺序的数字可以表示平面内一个点的位置数学模型:如图,有两条互
13、相垂直且有公共原点的数轴,水平方向的数轴叫做x轴,竖直方向的数轴叫做y轴,则这两条数轴构成了平面直角坐标系探究发现:如图,有一点D,过D点向x轴做垂线,垂足表示的数为3,过D向y轴作垂线,垂足表示的数为1,则点D用两个有顺序的数表示为:(3,1),同理点A可表示为:(-2,2)点B可以表示为: ( , )(-3,-2)点E到y轴的距离为 ;到x轴的距离为 若点P到x轴的距离为2,到y轴的距离为3,则点P用有顺序的数表示为: ( , ),( , ),( , ),( , )(3,2),(3,-2),(-3,2),(-3,-2)若有一点Q,过点Q分别向x轴和y轴作垂线段,两条垂线段与x轴、y轴围成的
14、长方形的面积为4,Q点可以用两个有顺序的整数表示,这样的Q点有 12个25如图1,点O为直线AB上一点,射线OCAB于O点,将一直角三角板的60角的顶点放在点O处,斜边OE在射线OB上,直角顶点D在直线AB的下方(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OE在BOC的内部,且恰好平分BOC,问:直线OD是否平分AOC?请说明理由;(2)将图1中的三角板绕点O按每秒5的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线OD恰好平分AOC,则t的值为 3或39(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使OD在AOC的内部,请探究:AOE与DOC之间的数量关系,
15、并说明理由26如图1,点O为直线AB上一点,过点O作射线OC,使BOC=120将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在BOC的内部,且恰好平分BOC问:此时直线ON是否平分AOC?请说明理由(2)将图1中的三角板绕点O以每秒6的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角AOC,则t的值为 10或40(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在AOC的内部,求AOM-NOC的度数27阅读:在用尺规作线段AB等于线段a时,小明的具体作法如下:
16、已知:如图,线段a:求作:线段AB,使得线段AB=a作法:作射线AM;在射线AM上截取AB=a线段AB即为所求,如图解决下列问题:已知:如图,线段b:(1)请你仿照小明的作法,在上图中的射线AM上求作点D,使得BD=b;(不要求写作法和结论,保留作图痕迹)(2)在(1)的条件下,取AD的中点E若AB=10,BD=6,求线段BE的长(要求:第(2)问重新画图解答)28(1)观察各图,第个图中有1个三角形,第个图中有3个三角形,第个图中有6个三角形,第个图中有 10 个三角形,根据这个规律可知第n个图中有 个三角形(用含正整数n的式子表示)(2)问在如图图形中是否存在这样的一个图形,该图形中共有3
17、5个三角形?若存在,求出n的值;若不存在请说明理由(3)在图中,点B是线段AC的中点,D为AC延长线上的一个动点,记PDA的面积为S1,PDB的面积为S2,PDC的面积为S3请直接写出S1、S2、S3之间的数量关系S1+S3=2S2 29如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点(1)用1个单位长度表示1cm,请你在数轴上表示出A、B、C三点的位置;(2)把点C到点A的距离记为CA,则CA= 66cm(3)若点B以每秒2cm的速度向左移动,同时A、C点分别以每秒1cm、4cm的速度向右移动设移动时间为t秒,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由30(12分)如图是钟表的表盘(1)钟表的分针旋转的速度是_度/分钟时针旋转的速度是_度/分钟;(2)在1:50时,钟表的时针与分针的夹角是度;(3)下午4时与5时之间,时针与分针在什么时刻成直角?