资源描述
北师大版七年级数学上册月考试卷(A4可编辑)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、下列图形绕虚线旋转一周,便能形成圆锥体的是( )
A . B . C . D .
2、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为( )
A .33分米2 B .24分米2 C .21分米2 D .42分米2
3、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )
A . B . C . D .
4、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )
A .12 B .14 C .16 D .18
5、下列几何体中,由一个曲面和一个圆围成的几何体是( )
A .球 B .圆锥 C .圆柱 D .棱柱
6、把如图的三角形绕它的最长边旋转一周,得到的几何体为图中的( )
A . B . C . D .
7、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。
A .208 B .148 C .128 D .188
8、图中的几何体是由哪个图形绕虚线旋转一周得到的( )
A . B . C . D .
9、电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
10、下面几何体中,是长方体的为( )
A . B .
C . D .
11、如图是某几何体的三视图及相关数据,则该几何体的表面积是( )
A . B . C . D .
12、如图, 是直角三角形 的高,将直角三角形 按以下方式旋转一周可以得到右侧几何体的是( ).
A .绕着 旋转 B .绕着 旋转 C .绕着 旋转 D .绕着 旋转
13、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
14、将下面左图直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是( )
A . B . C . D .
15、沿图中虚线旋转一周,能围成的几何体是( )
A . B . C . D .
二、填空题(每小题4分,共计20分)
1、快速旋转一枚竖立的硬币(假定旋转轴在原地不动),则可以得到一个立体图形球.这个现象我们可以说成 (请你用点线面体间的关系解释)
2、如图,是由17个棱长2的小正方体搭成的几何体,则它的表面积是 .
3、请同学们手拿一枚硬币,将其立在桌面上用力一转,它形成的是一个 体,由此说明 .
4、如图,在棱长分别为 、 、 的长方体中截掉一个棱长为 的正方体,则剩余几何体的表面积为 .
5、如图,一个表面涂满颜色的正方体,现将棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;各面都没有涂色的有 个.
三、判断题(每小题2分,共计6分)
1、体是由面围成的( )
2、棱柱侧面的形状可能是一个三角形。( )
四、计算题(每小题4分,共计12分)
1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
五、解答题(每小题4分,共计32分)
1、已知如图是边长为2cm的小正方形,现小正方形绕其对称轴线旋转一周,可以得到一个几何体,求所得的这个几何体的体积.
2、如图所示,画一个长和宽分别为6cm、4cm的长方形,并将其按一定的方式进行旋转.
(1)你能得到几种不同的圆柱体?
(2)把一个平面图形旋转成几何体,必须明确哪两个条件?
3、把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.
4、第一行的平面图形绕虚线旋转一周能得到第二行的一个几何体,请用线连接起来.
5、一个长12cm,宽12cm,高为8cm的长方体容器中装满了水.小明先把容器中的水倒满2个底面半径为3cm,高为5cm的圆柱体杯子,再把剩下的水全部倒入瓶子甲中.当瓶子甲正放时如图1,瓶内溶液的高度为20cm; 瓶子甲倒放时如图2,空余部分的高度为5cm. 求瓶子甲的容积. ( 取3,容器的厚度不计)
6、如图,一个正五棱柱的底面边长为2cm,高为4cm.
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.
7、如图,某玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,已知喷涂1dm2需用油漆59克,求喷涂这个玩具共需多少克油漆?
8、如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:
(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)
(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)
展开阅读全文