资源描述
七年级数学上册1.1生活中的图形平时训练试卷【可打印】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、小欣同学用纸(如图)折成了个正方体的盒子,里面放了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中( )
A . B . C . D .
2、如下图所示将三角形绕直线l旋转一周,可以得到图(e)所示的立体图形的是( )
A .图(a) B .图(b) C .图(c) D .图(d)
3、如图是一个由平面图形绕虚线旋转得到的立体图形,则这个平面图形是( )
A . B . C . D .
4、在下列立体图形中,只要两个面就能围成的是( )
A . B . C . D .
5、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
6、十个棱长为 的正方体摆放成如图的形状,这个图形的表面积是( )
A . B . C . D .
7、下列说法不正确的是( )
A .四棱柱是长方体 B .八棱柱有10个面
C .六棱柱有12个顶点 D .经过棱柱的每个顶点有3条棱
8、下列图形是棱锥的是( )
A . B . C . D .
9、下列立体图形中,只由一个面围成的是( )
A .正方体 B .圆锥 C .圆柱 D .球
10、一个几何体由4个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,则原立体图形不可能是( )
A . B . C . D .
11、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )
A .46米2 B .37米2 C .28米2 D .25米2
12、下列几何体中,是棱锥的为( )
A . B . C . D .
13、下列几何体,都是由平面围成的是( )
A .圆柱 B .三棱柱 C .圆锥 D .球
14、下列几何体中,圆柱体是( )
A . B . C . D .
15、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.
①用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;②用一平面去截这个正方体得到的截面是三角形ABC,则∠ABC=45°;③一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;④用一平面去截这个正方体得到的截面可能是八边形;⑤正方体平面展开图有11种不同的图形.
A .1 B .2 C .3 D .4
16、如图所示的沙漏,可以看作是由下列所给的哪个平面图形绕虚线旋转一周而成的( )
A . B . C . D .
17、如图,有一个棱长是 的正方体,从它的一个顶点处挖去一个棱长是 的正方体后,剩下物体的表面积和原来的表面积相比较( )
A .变大了 B .变小了 C .没变 D .无法确定变化
二、填空题(每小题2分,共计40分)
1、一个几何体的三视图如图所示,则该几何体的表面积是 .
2、若三棱柱的高为6 cm,底面边长都为5 cm,则三棱柱的侧面展开图的周长为 cm,面积为 cm2 .
3、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .
4、将一枚硬币立在桌面上,当用力一转时,它形成的是一个 体,说明的数学道理是 .
5、如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是 .
6、如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为 cm3 . (结果保留π)
7、如图,是由17个棱长2的小正方体搭成的几何体,则它的表面积是 .
8、在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”这里把雨滴看成了点,请用数学知识解释这一现象 .
9、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是 .
10、10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是 .
11、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.
12、从棱长为4的正方体毛坯的一角,挖去一个棱长为2的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .
13、如图,在平面直角坐标系中, 的三个顶点的坐标分别是 、 、 ,如果 沿着边 旋转,则所得旋转体的体积是 (结果保留 ).
14、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是 .
15、如图,在长方体ABCD﹣EFGH中,与对角线BH异面的棱有 .
16、下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形 .
17、如图,直角三角形绕直线L旋转一周,得到的立体图形是 .
18、一个长方形的长和宽分别为5、4,绕它的一边所在的直线旋转一周所形成的几何体的体积0 (结果保留π)
19、五棱柱是由 个面围成的,圆锥是由个面围成的 .
20、将下列几何体分类,柱体有: (填序号).
三、计算题(每小题2分,共计6分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
四、解答题(每小题4分,共计20分)
1、写出下图中各个几何体的名称,并按锥体和柱体把它们分类.
2、观察图中的立体图形,分别写出它们的名称.
3、如图,正方形 的边长为 ,以直线 为轴,将正方形旋转一周,所得几何体的表面积是多少?(结果保留 )
4、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.
(1) 这个几何体由个小正方体组成
(2) 在下面网格中画出左视图和俯视图.
(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.
5、10个棱长为acm的正方体摆放成如图的形状,这个图形的表面积是多少?
展开阅读全文